In this work, the Stochastic Traffic Engineering (STE) problem arising from the support of QoS-demanding real-time (e.g., delay and delay-jitter sensitive) media-streaming applications over unreliable IP-over-wireless pipes is addressed. Two main contributions are presented. First, we develop an optimal resource-management policy that allows a joint scheduling of the source rate, transmit energy and playout rate. Salient features of the proposed scheduling policy are that: (i) it is self-adaptive; and, (ii) it is able to provide hard (i.e., deterministic) QoS guarantees, in terms of hard limited playout delay, playout rate-jitter and pre-roll delay. Second, by referring to power and bandwidth limited access scenarios, we develop a traffic analysis of the underlying IP-over-wireless pipes that allows us to analyze the effects of both fading-induced errors and congestion-induced packet's losses on the end-to-end performance of the proposed scheduler. © 2011 Elsevier B.V. All rights reserved.

QoS Stochastic Traffic Engineering for the wireless support of real-time streaming applications

Cordeschi N.;
2012

Abstract

In this work, the Stochastic Traffic Engineering (STE) problem arising from the support of QoS-demanding real-time (e.g., delay and delay-jitter sensitive) media-streaming applications over unreliable IP-over-wireless pipes is addressed. Two main contributions are presented. First, we develop an optimal resource-management policy that allows a joint scheduling of the source rate, transmit energy and playout rate. Salient features of the proposed scheduling policy are that: (i) it is self-adaptive; and, (ii) it is able to provide hard (i.e., deterministic) QoS guarantees, in terms of hard limited playout delay, playout rate-jitter and pre-roll delay. Second, by referring to power and bandwidth limited access scenarios, we develop a traffic analysis of the underlying IP-over-wireless pipes that allows us to analyze the effects of both fading-induced errors and congestion-induced packet's losses on the end-to-end performance of the proposed scheduler. © 2011 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/240884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact