We show how oscillations in fluid flow over a fluid-saturated and porous sediment bed leads to the development of a bedform. To understand the role of pressure fluctuations on the bed associated with flow oscillations, we analyze how the flow penetrates into and through the bed. We then calculate the corresponding vertical pressure gradients within the bed that tend to expand the bed along the vertical direction. When these pressure gradients are large enough, they facilitate small irreversible rearrangements of the grains within the bed, and so cause granular creep. We conjecture that this granular creep alternates with jamming to produce a granular ratchet that slowly lifts the surface of the bed locally where pressure gradients dominate, and depresses the surface where shear stresses dominate. We observe that the shape of the resulting heap exhibits a constant characteristic width. The height of this heap evolves approximately as the square root of time, in agreement with dimensional arguments predicated on a coarse-grained viscous deformation of the bed. The surface of the heap contracts initially with the square root of time, consistent with an incompressible analysis of the flow of grains within the heap. Near its peak the heap grows due to a dilatation of the bed, to inward radial flux, or to a combination of the two.

How vertical oscillatory motion above a saturated sand bed leads to heap formation

La Ragione L.;Jenkins J. T.;
2022

Abstract

We show how oscillations in fluid flow over a fluid-saturated and porous sediment bed leads to the development of a bedform. To understand the role of pressure fluctuations on the bed associated with flow oscillations, we analyze how the flow penetrates into and through the bed. We then calculate the corresponding vertical pressure gradients within the bed that tend to expand the bed along the vertical direction. When these pressure gradients are large enough, they facilitate small irreversible rearrangements of the grains within the bed, and so cause granular creep. We conjecture that this granular creep alternates with jamming to produce a granular ratchet that slowly lifts the surface of the bed locally where pressure gradients dominate, and depresses the surface where shear stresses dominate. We observe that the shape of the resulting heap exhibits a constant characteristic width. The height of this heap evolves approximately as the square root of time, in agreement with dimensional arguments predicated on a coarse-grained viscous deformation of the bed. The surface of the heap contracts initially with the square root of time, consistent with an incompressible analysis of the flow of grains within the heap. Near its peak the heap grows due to a dilatation of the bed, to inward radial flux, or to a combination of the two.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/241380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact