We provide a new family of Kk-free pseudorandom graphs with edge density Θ(n−1/(k−1)), matching a recent construction due to Bishnoi, Ihringer and Pepe [2]. As in the former result, the idea is to use large subgraphs of polarity graphs, which are defined over a finite field Fq. While their construction required q to be odd, we will give the first construction with q a power of 2.

A clique-free pseudorandom subgraph of the pseudo polarity graph

Pavese F.
2022

Abstract

We provide a new family of Kk-free pseudorandom graphs with edge density Θ(n−1/(k−1)), matching a recent construction due to Bishnoi, Ihringer and Pepe [2]. As in the former result, the idea is to use large subgraphs of polarity graphs, which are defined over a finite field Fq. While their construction required q to be odd, we will give the first construction with q a power of 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/244748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact