Sailing navigation is an activity that requires acquiring and processing information from the surrounding environment. The advancement of technology has enabled sailboats to have an increasing number of onboard sensors that make sailing more user-friendly. However, data provided by these sensors are still visualized on 2D digital displays that imitate traditional analog interfaces. Although these displays are strategically placed on the sailboat, the user needs to divert attention from the primary navigation task to look at them, thus spending a significant amount of cognitive resources. AR-based technologies have the potential to overcome these limitations by displaying information registered in the real environment, but there are no studies in the literature for validating the effectiveness of this technology in the field of sailing. Thus, we designed a head-mounted display AR-based interface to assist users in monitoring wind data to avoid user diversion from the primary task of sailing. We conducted a user study involving 45 participants in an Immersive Virtual Reality simulated environment. We collected objective and subjective measures to compare the AR-based interface with a traditional data visualization system. The AR-based interface outperformed the traditional data visualization system regarding reaction time, cognitive load, system usability, and user experience.
Evaluating an augmented reality interface for sailing navigation: a comparative study with a immersive virtual reality simulator / Laera, F; Manghisi, Vm; Evangelista, A; Uva, Ae; Foglia, M; Fiorentino, M. - In: VIRTUAL REALITY. - ISSN 1359-4338. - (2022). [10.1007/s10055-022-00706-7]
Evaluating an augmented reality interface for sailing navigation: a comparative study with a immersive virtual reality simulator
Laera, F;Manghisi, VM;Evangelista, A
;Uva, AE;Foglia, M;Fiorentino, M
2022-01-01
Abstract
Sailing navigation is an activity that requires acquiring and processing information from the surrounding environment. The advancement of technology has enabled sailboats to have an increasing number of onboard sensors that make sailing more user-friendly. However, data provided by these sensors are still visualized on 2D digital displays that imitate traditional analog interfaces. Although these displays are strategically placed on the sailboat, the user needs to divert attention from the primary navigation task to look at them, thus spending a significant amount of cognitive resources. AR-based technologies have the potential to overcome these limitations by displaying information registered in the real environment, but there are no studies in the literature for validating the effectiveness of this technology in the field of sailing. Thus, we designed a head-mounted display AR-based interface to assist users in monitoring wind data to avoid user diversion from the primary task of sailing. We conducted a user study involving 45 participants in an Immersive Virtual Reality simulated environment. We collected objective and subjective measures to compare the AR-based interface with a traditional data visualization system. The AR-based interface outperformed the traditional data visualization system regarding reaction time, cognitive load, system usability, and user experience.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.