The capabilities of additive manufacturing (AM) techniques have been extensively examined in the literature. However, scientific gaps persist on the feasibility of realizing a coated component manufactured by using various materials processed by combining different AM processes. From this perspective, this study focuses on the manufacturing of a directed energy deposition (DED) coating by using 18Ni (300) maraging steel powder on AISI 316L components realized by laser-powder bed fusion (L-PBF), in order to assess the production of components with high geometrical complexity combined with high mechanical surface properties in selected areas. The quality of the manufactured coatings was assessed in-process through the implementation of an optical monitoring system and real-time image processing. In addition, an in-depth metallurgical analysis (microstructural and chemical) of the interface between the DED coating and the L-PBF component was carried out. Finally, hardness tests were performed on both the as-deposited and heat-treated coatings to confirm the high mechanical performance of the final component surface. The results revealed the potential of producing cost-effective and geometrically complex parts, such as molds or tools with internal cooling channels, that implement mechanically high-performance surfaces.

Effects of Laser-Deposited Maraging Steel on L-PBF 316L Component

Errico V.
;
Posa P.;Mazzarisi M.;Angelastro A.;Campanelli S. L.
2022-01-01

Abstract

The capabilities of additive manufacturing (AM) techniques have been extensively examined in the literature. However, scientific gaps persist on the feasibility of realizing a coated component manufactured by using various materials processed by combining different AM processes. From this perspective, this study focuses on the manufacturing of a directed energy deposition (DED) coating by using 18Ni (300) maraging steel powder on AISI 316L components realized by laser-powder bed fusion (L-PBF), in order to assess the production of components with high geometrical complexity combined with high mechanical surface properties in selected areas. The quality of the manufactured coatings was assessed in-process through the implementation of an optical monitoring system and real-time image processing. In addition, an in-depth metallurgical analysis (microstructural and chemical) of the interface between the DED coating and the L-PBF component was carried out. Finally, hardness tests were performed on both the as-deposited and heat-treated coatings to confirm the high mechanical performance of the final component surface. The results revealed the potential of producing cost-effective and geometrically complex parts, such as molds or tools with internal cooling channels, that implement mechanically high-performance surfaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/245342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact