The equation -epsilon(2)Deltau + a(epsilon)(x)u = u(p-1) with boundary Dirichlet zero data is considered in an exterior domain Omega = R-N \ (&omega;) over bar (omega bounded and N greater than or equal to 2). Under the assumption that a(epsilon) greater than or equal to a(0) > 0 concentrates round a point of Omega as epsilon --> 0, that p > 2 and p < 2N/(N - 2) when N > 3, the existence of at least three positive distinct solutions is proved

Multiple positive solutions for singularly perturbed elliptic problems in exterior domains

Cerami, G.;
2003-01-01

Abstract

The equation -epsilon(2)Deltau + a(epsilon)(x)u = u(p-1) with boundary Dirichlet zero data is considered in an exterior domain Omega = R-N \ (ω) over bar (omega bounded and N greater than or equal to 2). Under the assumption that a(epsilon) greater than or equal to a(0) > 0 concentrates round a point of Omega as epsilon --> 0, that p > 2 and p < 2N/(N - 2) when N > 3, the existence of at least three positive distinct solutions is proved
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/2455
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact