Optical on-chip wireless interconnection is an emerging technology that aims to overcome the communication bottleneck in computing architectures and in which multiple processing units are exploited for data-intensive applications. In this work, we propose an integrated dielectric Vivaldi antenna, which exhibits the same gain performances for both TE and TM input polarizations. Point-to-point on-chip communication links between two Vivaldi antennas are analyzed. Moreover, the effect of wave polarization on the link performances is numerically studied in on-chip multilayer structures in connection with the multilayer characteristic parameters, i.e., cladding layer thickness and refractive index. The numerical results show that, with the same antenna gain, TM polarization is affected by lower propagation losses when suitable cladding layer thickness and refractive index are considered.
Polarization Effect on the Performance of On-Chip Wireless Optical Point-to-Point Links / Calo, Giovanna; Bellanca, Gaetano; Fuschini, Franco; Barbiroli, Marina; Tralli, Velio; Petruzzelli, Vincenzo. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 13:5(2023). [10.3390/app13053062]
Polarization Effect on the Performance of On-Chip Wireless Optical Point-to-Point Links
Calo, Giovanna
;Petruzzelli, Vincenzo
2023-01-01
Abstract
Optical on-chip wireless interconnection is an emerging technology that aims to overcome the communication bottleneck in computing architectures and in which multiple processing units are exploited for data-intensive applications. In this work, we propose an integrated dielectric Vivaldi antenna, which exhibits the same gain performances for both TE and TM input polarizations. Point-to-point on-chip communication links between two Vivaldi antennas are analyzed. Moreover, the effect of wave polarization on the link performances is numerically studied in on-chip multilayer structures in connection with the multilayer characteristic parameters, i.e., cladding layer thickness and refractive index. The numerical results show that, with the same antenna gain, TM polarization is affected by lower propagation losses when suitable cladding layer thickness and refractive index are considered.File | Dimensione | Formato | |
---|---|---|---|
applsci-13-03062-v2.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
5.64 MB
Formato
Adobe PDF
|
5.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.