This work presents the best theory diagrams (BTDs) for multilayered plates involved in multifield problems (mechanical, thermal and electrical). A BTD is a curve that reports the minimum number of terms of a refined model for a given accuracy. The axiomatic/asymptotic technique is employed in order to detect the relevant terms, and the error is computed with respect to an exact or quasi-exact solution. The models that belong to the BTDs are constructed by means of a genetic algorithm and the Carrera Unified Formulation (CUF). The CUF defines the displacement field as an expansion of the thickness coordinate. The governing equations are obtained in terms of few fundamental nuclei, whose form does not depend on the particular expansion order that is employed. The Navier closed-form solution has been adopted to solve the equilibrium equations. The analyses herein reported are related to plates subjected to multifield loads: mechanical, thermal and electrical. The aim of this study is to evaluate the influence of the type of the load in the definition of the BTDs. In addition, the influence of geometry, material parameters and displacement/stress components are considered. The results suggest that the BTD and the CUF can be considered as tools to evaluate any structural theory against a reference solution. In addition, it has been found that the BTD definition is influenced to a great extent by the type of load.
Best theory diagrams for multilayered plates considering multifield analysis / Cinefra, M.; Carrera, E.; Lamberti, A.; Petrolo, M.. - In: JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES. - ISSN 1045-389X. - 28:16(2017), pp. 2184-2205. [10.1177/1045389X16679018]
Best theory diagrams for multilayered plates considering multifield analysis
Cinefra M.;
2017-01-01
Abstract
This work presents the best theory diagrams (BTDs) for multilayered plates involved in multifield problems (mechanical, thermal and electrical). A BTD is a curve that reports the minimum number of terms of a refined model for a given accuracy. The axiomatic/asymptotic technique is employed in order to detect the relevant terms, and the error is computed with respect to an exact or quasi-exact solution. The models that belong to the BTDs are constructed by means of a genetic algorithm and the Carrera Unified Formulation (CUF). The CUF defines the displacement field as an expansion of the thickness coordinate. The governing equations are obtained in terms of few fundamental nuclei, whose form does not depend on the particular expansion order that is employed. The Navier closed-form solution has been adopted to solve the equilibrium equations. The analyses herein reported are related to plates subjected to multifield loads: mechanical, thermal and electrical. The aim of this study is to evaluate the influence of the type of the load in the definition of the BTDs. In addition, the influence of geometry, material parameters and displacement/stress components are considered. The results suggest that the BTD and the CUF can be considered as tools to evaluate any structural theory against a reference solution. In addition, it has been found that the BTD definition is influenced to a great extent by the type of load.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.