The construction sector is responsible for 40% of carbon emissions, 14% of water consumption and 60% of waste production in the world, generating a state of unsustainability. In order to keep these values under control and make the most sustainable choices starting from the earliest stages of building design, a Life Cycle Assessment (LCA) can be used. This consists of an analysis of the environmental impacts of a product, activity or process throughout all phases of the life cycle. The fundamental problem of implementing this analysis process in the construction sector is the difficulty in managing the fragmented building information that covers all aspects of buildings life stages in an integrated way. The Building Information Modeling (BIM) approach offers the possibility of managing a complex information system in an integrated manner. The BIM-LCA integration solutions proposed in recent years made LCA analysis faster, cheaper and usable by more professionals. This paper proposes an analysis of the state of the art of the research published in the last ten years regarding the integration of BIM-LCA as a methodology whereby the BIM approach can support and simplify data management for LCA analysis. The aim was to present the work methodologies tested so far and to describe all the factors that were considered in applying the BIM-LCA integration. The novelty of this review consists of identifying a series of more recurrent parameters and measures used by most researchers deriving a trend of possible and consolidated workflows. The result is, therefore, to present evidence of a general heterogenous framework and to define the common and widespread approaches identifying the main features.

Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends / Dalla Mora, Tiziano; Bolzonello, Erika; Cavalliere, Carmine; Peron, Fabio. - In: SUSTAINABILITY. - ISSN 2071-1050. - ELETTRONICO. - 12:(2020). [10.3390/su12177182]

Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends

Carmine Cavalliere;
2020-01-01

Abstract

The construction sector is responsible for 40% of carbon emissions, 14% of water consumption and 60% of waste production in the world, generating a state of unsustainability. In order to keep these values under control and make the most sustainable choices starting from the earliest stages of building design, a Life Cycle Assessment (LCA) can be used. This consists of an analysis of the environmental impacts of a product, activity or process throughout all phases of the life cycle. The fundamental problem of implementing this analysis process in the construction sector is the difficulty in managing the fragmented building information that covers all aspects of buildings life stages in an integrated way. The Building Information Modeling (BIM) approach offers the possibility of managing a complex information system in an integrated manner. The BIM-LCA integration solutions proposed in recent years made LCA analysis faster, cheaper and usable by more professionals. This paper proposes an analysis of the state of the art of the research published in the last ten years regarding the integration of BIM-LCA as a methodology whereby the BIM approach can support and simplify data management for LCA analysis. The aim was to present the work methodologies tested so far and to describe all the factors that were considered in applying the BIM-LCA integration. The novelty of this review consists of identifying a series of more recurrent parameters and measures used by most researchers deriving a trend of possible and consolidated workflows. The result is, therefore, to present evidence of a general heterogenous framework and to define the common and widespread approaches identifying the main features.
2020
Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends / Dalla Mora, Tiziano; Bolzonello, Erika; Cavalliere, Carmine; Peron, Fabio. - In: SUSTAINABILITY. - ISSN 2071-1050. - ELETTRONICO. - 12:(2020). [10.3390/su12177182]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/253720
Citazioni
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 28
social impact