The Kuramoto-Sinelshchikov-Cahn-Hilliard equation models the spinodal decomposition of phase separating systems in an external field, the spatiotemporal evolution of the morphology of steps on crystal surfaces and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.
H-1 solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - STAMPA. - 72:1(2023), pp. 159-180. [10.1007/s11587-021-00623-y]
H-1 solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation
Coclite, Giuseppe Maria
;
2023-01-01
Abstract
The Kuramoto-Sinelshchikov-Cahn-Hilliard equation models the spinodal decomposition of phase separating systems in an external field, the spatiotemporal evolution of the morphology of steps on crystal surfaces and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.File | Dimensione | Formato | |
---|---|---|---|
2023_H1_solutions_for_a_Kuramoto–Sinelshchikov–Cahn–Hilliard_type_equation_pdfeditoriale.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
416.67 kB
Formato
Adobe PDF
|
416.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.