The Kuramoto-Sinelshchikov-Cahn-Hilliard equation models the spinodal decomposition of phase separating systems in an external field, the spatiotemporal evolution of the morphology of steps on crystal surfaces and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.

H-1 solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - STAMPA. - 72:1(2023), pp. 159-180. [10.1007/s11587-021-00623-y]

H-1 solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation

Coclite, Giuseppe Maria
;
2023-01-01

Abstract

The Kuramoto-Sinelshchikov-Cahn-Hilliard equation models the spinodal decomposition of phase separating systems in an external field, the spatiotemporal evolution of the morphology of steps on crystal surfaces and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.
2023
H-1 solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - STAMPA. - 72:1(2023), pp. 159-180. [10.1007/s11587-021-00623-y]
File in questo prodotto:
File Dimensione Formato  
2023_H1_solutions_for_a_Kuramoto–Sinelshchikov–Cahn–Hilliard_type_equation_pdfeditoriale.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 416.67 kB
Formato Adobe PDF
416.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/254960
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact