Green roofs have been proposed for energy saving purposes in many countries with different climatic conditions. However, their cooling and heating potential strongly depends on the climate and building characteristics. In particular, the increase of the thermal capacity of green roofs compared to traditional roofs, if not controlled with insulation, may lead to higher cooling and heating loads. This paper discusses the energy saving potential of green roofs adopting a variable insulation strategy. A system consisting of a plenum located between a green roof and the room underneath and a sensor-operated fan that couples (or decouples) the green roof mass with the indoor environment was developed. The fan is activated and stopped using temperature based rules; the plenum is ventilated only when the fan works, creating a variable insulation system. Four cells with an insulated traditional roof, a non-insulated green roof, an insulated green roof, and a green roof with the variable insulation system have been tested in a hot and dry climate with mild winters over several years. This paper compares and discusses different plenum control algorithms. Results are particularly promising because the variable insulating system proved to adjust the thermal capacity of the roof effectively. In summer, the non-insulated green roof and the green roof with variable insulation system achieved the lowest indoor temperature; in winter, the insulated traditional roof and the variable insulation green roof system achieved the highest indoor temperatures. Measurements are hence compared with simulations. Finally, the energy saving potential of the new green roof system is evaluated. ©2014 Published by Elsevier B.V.

Comfort and energy savings with active green roofs / La Roche, P.; Berardi, U.. - In: ENERGY AND BUILDINGS. - ISSN 0378-7788. - 82:(2014), pp. 492-504. [10.1016/j.enbuild.2014.07.055]

Comfort and energy savings with active green roofs

Berardi U.
2014-01-01

Abstract

Green roofs have been proposed for energy saving purposes in many countries with different climatic conditions. However, their cooling and heating potential strongly depends on the climate and building characteristics. In particular, the increase of the thermal capacity of green roofs compared to traditional roofs, if not controlled with insulation, may lead to higher cooling and heating loads. This paper discusses the energy saving potential of green roofs adopting a variable insulation strategy. A system consisting of a plenum located between a green roof and the room underneath and a sensor-operated fan that couples (or decouples) the green roof mass with the indoor environment was developed. The fan is activated and stopped using temperature based rules; the plenum is ventilated only when the fan works, creating a variable insulation system. Four cells with an insulated traditional roof, a non-insulated green roof, an insulated green roof, and a green roof with the variable insulation system have been tested in a hot and dry climate with mild winters over several years. This paper compares and discusses different plenum control algorithms. Results are particularly promising because the variable insulating system proved to adjust the thermal capacity of the roof effectively. In summer, the non-insulated green roof and the green roof with variable insulation system achieved the lowest indoor temperature; in winter, the insulated traditional roof and the variable insulation green roof system achieved the highest indoor temperatures. Measurements are hence compared with simulations. Finally, the energy saving potential of the new green roof system is evaluated. ©2014 Published by Elsevier B.V.
2014
Comfort and energy savings with active green roofs / La Roche, P.; Berardi, U.. - In: ENERGY AND BUILDINGS. - ISSN 0378-7788. - 82:(2014), pp. 492-504. [10.1016/j.enbuild.2014.07.055]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/258003
Citazioni
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 124
social impact