In addition to the mitigation of carbon emissions through the reduction of building energy consumption, the prevention of fire spread in buildings is important an important task globally. Therefore, a growing interest towards building materials that can simultaneously contribute to energy savings and provide good flame-retardant performance in buildings exist. The flame-retardant performances of buildings can be improved through the use of inorganic building materials during construction. Meanwhile, among the different types of construction waste, more than 70% of ceramics can be recycled, which would reduce carbon emissions in the production process. Ceramics are inorganic and non-flammable, and can thus secure the flame-retardant performance of buildings. In this study, recycled ceramic-based inorganic insulation to secure the flame-retardant performance of a building are analyzed for their energy saving values. A case study building was modeled and the flame-retardant performance and building energy consumption were analyzed. Setting the thermal transmittance of the external wall according to the energy conservation design standards in South Korea, the tradeoff between model calculates annual energy consumption fire protection and minimization of material environmental impacts are discussed. As a result of simulation, when a wall constructed according to the energy conservation design standards of buildings, the building energy was saved by 18.6% and fire resistance performance was secured.

Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings / Wi, S.; Yang, S.; Berardi, U.; Kim, S.. - In: ENVIRONMENT INTERNATIONAL. - ISSN 0160-4120. - 130:(2019). [10.1016/j.envint.2019.06.010]

Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings

Berardi U.;
2019-01-01

Abstract

In addition to the mitigation of carbon emissions through the reduction of building energy consumption, the prevention of fire spread in buildings is important an important task globally. Therefore, a growing interest towards building materials that can simultaneously contribute to energy savings and provide good flame-retardant performance in buildings exist. The flame-retardant performances of buildings can be improved through the use of inorganic building materials during construction. Meanwhile, among the different types of construction waste, more than 70% of ceramics can be recycled, which would reduce carbon emissions in the production process. Ceramics are inorganic and non-flammable, and can thus secure the flame-retardant performance of buildings. In this study, recycled ceramic-based inorganic insulation to secure the flame-retardant performance of a building are analyzed for their energy saving values. A case study building was modeled and the flame-retardant performance and building energy consumption were analyzed. Setting the thermal transmittance of the external wall according to the energy conservation design standards in South Korea, the tradeoff between model calculates annual energy consumption fire protection and minimization of material environmental impacts are discussed. As a result of simulation, when a wall constructed according to the energy conservation design standards of buildings, the building energy was saved by 18.6% and fire resistance performance was secured.
2019
Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings / Wi, S.; Yang, S.; Berardi, U.; Kim, S.. - In: ENVIRONMENT INTERNATIONAL. - ISSN 0160-4120. - 130:(2019). [10.1016/j.envint.2019.06.010]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/258005
Citazioni
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact