In recent years, there has been a growing interest in the design of courtyards for the microclimatic enhancement of outdoor spaces. However, there is still little knowledge regarding the thermal performance characteristics of courtyards, particularly in hot and humid climates. This study evaluates the ability of unshaded courtyards for providing thermally comfortable outdoor spaces according to different design configurations and scenarios, including the orientations, height and albedo of wall enclosure, and use of vegetation. The software ENVI-met was used as a tool for simulating the thermal performance of courtyards in the hot and humid climate of Kuala Lumpur, Malaysia. The PMV and the number of hours per day that a courtyard could be enjoyed once the proposed design suggestions were implemented are assessed. Likewise, the Physiologically Equivalent Temperature (PET) index allowed to further explore the thermal comfort conditions of courtyards. As a result, guidelines are proposed in order to optimize the design of courtyards towards enhancing their thermal performance characteristics. In particular, the study shows that according to design parameters such as the building height ratio, an abundance in the amount vegetation the courtyard can achieve an acceptable level of thermal comfort for the tropics and may be enjoyed by its users for a long duration of daytime even during the noontime. Finally, this paper stresses that only well designed courtyards may represent a valid option for sustainable built environments.

Thermal performance characteristics of unshaded courtyards in hot and humid climates / Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A.. - In: BUILDING AND ENVIRONMENT. - ISSN 0360-1323. - 87:(2015), pp. 154-168. [10.1016/j.buildenv.2015.02.001]

Thermal performance characteristics of unshaded courtyards in hot and humid climates

Berardi U.;
2015-01-01

Abstract

In recent years, there has been a growing interest in the design of courtyards for the microclimatic enhancement of outdoor spaces. However, there is still little knowledge regarding the thermal performance characteristics of courtyards, particularly in hot and humid climates. This study evaluates the ability of unshaded courtyards for providing thermally comfortable outdoor spaces according to different design configurations and scenarios, including the orientations, height and albedo of wall enclosure, and use of vegetation. The software ENVI-met was used as a tool for simulating the thermal performance of courtyards in the hot and humid climate of Kuala Lumpur, Malaysia. The PMV and the number of hours per day that a courtyard could be enjoyed once the proposed design suggestions were implemented are assessed. Likewise, the Physiologically Equivalent Temperature (PET) index allowed to further explore the thermal comfort conditions of courtyards. As a result, guidelines are proposed in order to optimize the design of courtyards towards enhancing their thermal performance characteristics. In particular, the study shows that according to design parameters such as the building height ratio, an abundance in the amount vegetation the courtyard can achieve an acceptable level of thermal comfort for the tropics and may be enjoyed by its users for a long duration of daytime even during the noontime. Finally, this paper stresses that only well designed courtyards may represent a valid option for sustainable built environments.
2015
Thermal performance characteristics of unshaded courtyards in hot and humid climates / Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A.. - In: BUILDING AND ENVIRONMENT. - ISSN 0360-1323. - 87:(2015), pp. 154-168. [10.1016/j.buildenv.2015.02.001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/258041
Citazioni
  • Scopus 212
  • ???jsp.display-item.citation.isi??? 176
social impact