In the context of constant-dimension subspace codes, an important problem is to determine the largest possible size A(q)(n, d; k) of codes whose codewords are k-subspaces of F-q(n) with minimum subspace distance d. Here in order to obtain improved constructions, we investigate several approaches to combine subspace codes. This allow us to present improvements on the lower bounds for constant-dimension subspace codes for many parameters, including A(q)(10, 4; 5), A(q)(12, 4; 4), A(q)(12, 6, 6) and A(q)(16, 4; 4).

COMBINING SUBSPACE CODES / Cossidente, A; Kurz, S; Marino, G; Pavese, F. - In: ADVANCES IN MATHEMATICS OF COMMUNICATIONS. - ISSN 1930-5346. - 17:3(2023), pp. 536-550. [10.3934/amc.2021007]

COMBINING SUBSPACE CODES

Cossidente, A;Marino, G;Pavese, F
2023-01-01

Abstract

In the context of constant-dimension subspace codes, an important problem is to determine the largest possible size A(q)(n, d; k) of codes whose codewords are k-subspaces of F-q(n) with minimum subspace distance d. Here in order to obtain improved constructions, we investigate several approaches to combine subspace codes. This allow us to present improvements on the lower bounds for constant-dimension subspace codes for many parameters, including A(q)(10, 4; 5), A(q)(12, 4; 4), A(q)(12, 6, 6) and A(q)(16, 4; 4).
2023
COMBINING SUBSPACE CODES / Cossidente, A; Kurz, S; Marino, G; Pavese, F. - In: ADVANCES IN MATHEMATICS OF COMMUNICATIONS. - ISSN 1930-5346. - 17:3(2023), pp. 536-550. [10.3934/amc.2021007]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/262545
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact