This paper discusses the main challenges of using fiber reinforced polymers (FRPs) in architectural applications. Architects are showing increased interest in the use of FRPs in modern buildings thanks to FRPs' ability to allow cost effective realization of unique shapes and flexible aesthetics, while accommodating architectural designs and needs. The long-term durability, weathering resistance, and the exceptional mechanical properties have recently suggested the adoption of FRPs for building façade systems in an increasing number of buildings worldwide. However, some challenges for a wider adoption of FRPs in buildings are represented by the environmental and thermal aspects of their production, as well as their resistance to the expected "fire loads". This last aspect often raises many concerns, which often require expensive fire tests. In this paper, the results of cone calorimeter tests are compared with software simulations to evaluate the possibility of designing FRPs on the computer as opposed to current design practice that involves iterative use of fire testing. The comparison shows that pyrolysis simulations related to FRPs are still not an effective way to design fire safe FRPs for architectural applications.

Thermal and fire characteristics of FRP composites for architectural applications / Berardi, U.; Dembsey, N.. - In: POLYMERS. - ISSN 2073-4360. - 7:11(2015), pp. 2276-2289. [10.3390/polym7111513]

Thermal and fire characteristics of FRP composites for architectural applications

Berardi U.;
2015-01-01

Abstract

This paper discusses the main challenges of using fiber reinforced polymers (FRPs) in architectural applications. Architects are showing increased interest in the use of FRPs in modern buildings thanks to FRPs' ability to allow cost effective realization of unique shapes and flexible aesthetics, while accommodating architectural designs and needs. The long-term durability, weathering resistance, and the exceptional mechanical properties have recently suggested the adoption of FRPs for building façade systems in an increasing number of buildings worldwide. However, some challenges for a wider adoption of FRPs in buildings are represented by the environmental and thermal aspects of their production, as well as their resistance to the expected "fire loads". This last aspect often raises many concerns, which often require expensive fire tests. In this paper, the results of cone calorimeter tests are compared with software simulations to evaluate the possibility of designing FRPs on the computer as opposed to current design practice that involves iterative use of fire testing. The comparison shows that pyrolysis simulations related to FRPs are still not an effective way to design fire safe FRPs for architectural applications.
2015
Thermal and fire characteristics of FRP composites for architectural applications / Berardi, U.; Dembsey, N.. - In: POLYMERS. - ISSN 2073-4360. - 7:11(2015), pp. 2276-2289. [10.3390/polym7111513]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/262689
Citazioni
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact