The decarbonization of the energy sector represents a challenge that requires new tools and approaches of analysis. This paper aims to demonstrate the fundamental role that geographical distributed real-time co-simulations (GD-RTDS) can play in this regard. To this end, three different case studies have been analyzed with GD-RTDS, covering a wide range of applications for the energy sector decarbonization: (a) implementation of Renewable Energy Communities for supporting the share increase of Renewable Energy Sources, (b) the integration and management of Onshore Power Supply, and (c) the integration of a forecasting tool for the management of the Electric Vehicle charging. The performed experiments included fully simulated components, together with (power) hardware-in-the-loop and software-in-the-loop elements. These components have been simulated in different laboratory facilities in Italy and Germany, all operating in a synchronized manner under the presented geographically-distributed setup. The results show that the proposed architecture is flexible enough to be used for modeling all the different case studies; moreover, they highlight the significant contribution that the GD-RTDS methodology can give in informing and driving energy transition policies and the fundamental role of power systems to spearhead the complete decarbonization of the energy sector.
On the model flexibility of the geographical distributed real-time co-simulation: The example of ENET-RT lab / Mazza, A.; Benedetto, G.; Pons, E.; Bompard, E.; De Paola, A.; Thomas, D.; Kotsakis, E.; Fulli, G.; Vogel, S.; Acosta Gil, A.; Monti, A.; Bruno, S.; Iurlaro, C.; La Scala, M.; Bonfiglio, A.; Cepollini, P.; D'Agostino, F.; Invernizzi, M.; Rossi, M.; Silvestro, F.; De Caro, F.; Giannoccaro, G.; Villacci, D.. - In: SUSTAINABLE ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 40:(2024). [10.1016/j.segan.2024.101501]
On the model flexibility of the geographical distributed real-time co-simulation: The example of ENET-RT lab
Bruno S.;Iurlaro C.;La Scala M.;
2024-01-01
Abstract
The decarbonization of the energy sector represents a challenge that requires new tools and approaches of analysis. This paper aims to demonstrate the fundamental role that geographical distributed real-time co-simulations (GD-RTDS) can play in this regard. To this end, three different case studies have been analyzed with GD-RTDS, covering a wide range of applications for the energy sector decarbonization: (a) implementation of Renewable Energy Communities for supporting the share increase of Renewable Energy Sources, (b) the integration and management of Onshore Power Supply, and (c) the integration of a forecasting tool for the management of the Electric Vehicle charging. The performed experiments included fully simulated components, together with (power) hardware-in-the-loop and software-in-the-loop elements. These components have been simulated in different laboratory facilities in Italy and Germany, all operating in a synchronized manner under the presented geographically-distributed setup. The results show that the proposed architecture is flexible enough to be used for modeling all the different case studies; moreover, they highlight the significant contribution that the GD-RTDS methodology can give in informing and driving energy transition policies and the fundamental role of power systems to spearhead the complete decarbonization of the energy sector.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.