The doctoral thesis investigates the significant advancements in ring resonator-based devices for biosensing applications, with a particular focus on silicon and silicon nitride platforms. The research is organized in four chapters, each examining the potential and efficacy of this technology, thereby providing valuable insights into its practical applications within the biosensing domain. The first chapter offers a comprehensive overview of biosensors, highlighting the working principle of ring resonators. It emphasizes the critical importance of functionalization techniques that enhance the sensitivity and specificity of these devices, supported by case studies of established companies such as SiPhox and Genalyte, which have successfully commercialized ring resonator-based biosensing technologies. The second chapter focuses on the fabrication and characterization of ring resonators developed using Silicon-on-Insulator (SOI) technology at SiPhotonIC in Copenhagen, Denmark. Four distinct configurations—namely, single ring, slotted ring, panda ring, and ring with “S” junction—are explored, with performance evaluated through bulk sensitivity experiments measured in terms of figure-of-merit. The findings reveal that the slotted ring configuration exhibits superior sensitivity, which is crucial for future biosensing applications. In the third chapter, the focus shifts to silicon nitride ring resonators fabricated at the Nanophotonic Technology Center (NTC), Polytechnic University of Valencia, Spain. This chapter examines two configurations of ring resonators obtained with strip and slot waveguides, employing bulk sensitivity measurements with progressively concentrated ethanol solutions, alongside surface sensitivity experiments involving the BSA-antiBSA pair. Preliminary results suggest the ring resonator with slot waveguides as the well-suited for subsequent applications in viral detection. The fourth chapter summarizes the practical implementation of the most promising resonator configuration for the detection of viruses, specifically SARS-CoV-2. It compares the detection capabilities of its spike protein through two functionalization methods: in-situ and with the employment of a microprinter. The experimental results yield estimations of the limit-of-detection, affirming the potential of the developed platform in addressing critical public health challenges. These results not only highlight the efficacy of the ring resonator design in achieving high sensitivity but also demonstrate its applicability in rapid diagnostics, which is particularly vital in the context of global health crises. In conclusion, the thesis establishes a foundational understanding of ring resonators as powerful biosensing tools on silicon and silicon nitride platforms. The comparative analyses across various configurations, combined with practical testing for viral detection, affirm the versatility and effectiveness of these devices in real-world applications. The insights gained from this research lay the groundwork for future innovations in biosensing technology, potentially leading to the development of more sensitive, specific, and rapid diagnostic tools. Further exploration is justified to optimize fabrication processes and functionalization strategies, as well as to expand applications beyond viral detection to encompass a broader range of biomarkers, significantly enhancing the impact of ring resonators in clinical and environmental monitoring.
La tesi di dottorato indaga i significativi progressi nei dispositivi basati su risonatori ad anello per applicazioni di biosensing, con un particolare focus sulle piattaforme in silicio e nitruro di silicio. La ricerca è organizzata in quattro capitoli, ciascuno dei quali esamina il potenziale e l'efficacia di questa tecnologia, fornendo così preziose intuizioni sulle sue applicazioni pratiche nel dominio del biosensing. Il primo capitolo offre una panoramica completa sui biosensori, evidenziando il principio di funzionamento dei risonatori ad anello. Sottolinea l'importanza critica delle tecniche di funzionalizzazione che migliorano la sensibilità e la specificità di questi dispositivi, supportata da studi di caso di aziende affermate come SiPhox e Genalyte, che hanno commercializzato con successo tecnologie di biosensing basate su risonatori ad anello. Il secondo capitolo si concentra sulla fabbricazione e caratterizzazione di risonatori ad anello sviluppati utilizzando la tecnologia Silicon-on-Insulator (SOI) presso SiPhotonIC a Copenaghen, Danimarca. Vengono esplorate quattro configurazioni distinte—ovvero anello con guide strip, anello con guide slot, anello panda e anello con giunzione a “S”—con prestazioni valutate attraverso esperimenti di bulk sensitivity misurati in termini di figure-of-merit. I risultati rivelano che il risonatore ad anello con guide slot mostra una sensibilità superiore. Nel terzo capitolo, l'attenzione si sposta sui risonatori ad anello in nitruro di silicio fabbricati presso il Nanophotonic Technology Center (NTC), Università Politecnica di Valencia, Spagna. Questo capitolo esamina due configurazioni di risonatori ad anello ottenute con guide d'onda strip e slot, sottoposti ad esperimenti di bulk sensitivity con soluzioni di etanolo a concentrazioni crescenti e ad esperimenti di surface sensitivity utilizzando la coppia BSA-antiBSA. I risultati preliminari suggeriscono che il risonatore ad anello con guide d'onda slot è il più adatto per successive applicazioni nella rilevazione virale. Il quarto capitolo riassume l'implementazione pratica della configurazione di risonatore più promettente per la rilevazione dei virus, in particolare del SARS-CoV-2. Viene confrontata la capacità di rilevazione della proteina spike attraverso due metodi di funzionalizzazione: in-situ e con l'uso di un microprinter. I risultati sperimentali forniscono stime del limit-of-detection, affermando il potenziale della piattaforma sviluppata nel rispondere a sfide critiche di salute pubblica. Questi risultati non solo evidenziano l'efficacia del design del risonatore ad anello nell'ottenere alta sensibilità, ma dimostrano anche la sua applicabilità nella diagnostica rapida, particolarmente vitale nel contesto delle crisi sanitarie globali. In conclusione, la tesi fornisce una panoramica dei risonatori ad anello come potenti strumenti di biosensing su piattaforme in silicio e nitruro di silicio. Le analisi comparative tra varie configurazioni, combinate con test pratici per la rilevazione virale, confermano la versatilità e l'efficacia di questi dispositivi in applicazioni reali. Le intuizioni derivanti da questa ricerca pongono le basi per future innovazioni nella tecnologia di biosensing, portando al potenziale sviluppo di strumenti diagnostici più sensibili, specifici e rapidi. È giustificata un'ulteriore esplorazione per ottimizzare i processi di fabbricazione e le strategie di funzionalizzazione, oltre ad espandere le applicazioni oltre la rilevazione virale per comprendere un'ampia gamma di biomarcatori, migliorando significativamente l'impatto dei risonatori ad anello nel monitoraggio clinico e ambientale.
Highly sensitive biosensing through Silicon Photonics: Ring resonators for early detection of viral infections / La Grasta, Annabella. - ELETTRONICO. - (2024). [10.60576/poliba/iris/la-grasta-annabella_phd2024]
Highly sensitive biosensing through Silicon Photonics: Ring resonators for early detection of viral infections
La Grasta, Annabella
2024-01-01
Abstract
The doctoral thesis investigates the significant advancements in ring resonator-based devices for biosensing applications, with a particular focus on silicon and silicon nitride platforms. The research is organized in four chapters, each examining the potential and efficacy of this technology, thereby providing valuable insights into its practical applications within the biosensing domain. The first chapter offers a comprehensive overview of biosensors, highlighting the working principle of ring resonators. It emphasizes the critical importance of functionalization techniques that enhance the sensitivity and specificity of these devices, supported by case studies of established companies such as SiPhox and Genalyte, which have successfully commercialized ring resonator-based biosensing technologies. The second chapter focuses on the fabrication and characterization of ring resonators developed using Silicon-on-Insulator (SOI) technology at SiPhotonIC in Copenhagen, Denmark. Four distinct configurations—namely, single ring, slotted ring, panda ring, and ring with “S” junction—are explored, with performance evaluated through bulk sensitivity experiments measured in terms of figure-of-merit. The findings reveal that the slotted ring configuration exhibits superior sensitivity, which is crucial for future biosensing applications. In the third chapter, the focus shifts to silicon nitride ring resonators fabricated at the Nanophotonic Technology Center (NTC), Polytechnic University of Valencia, Spain. This chapter examines two configurations of ring resonators obtained with strip and slot waveguides, employing bulk sensitivity measurements with progressively concentrated ethanol solutions, alongside surface sensitivity experiments involving the BSA-antiBSA pair. Preliminary results suggest the ring resonator with slot waveguides as the well-suited for subsequent applications in viral detection. The fourth chapter summarizes the practical implementation of the most promising resonator configuration for the detection of viruses, specifically SARS-CoV-2. It compares the detection capabilities of its spike protein through two functionalization methods: in-situ and with the employment of a microprinter. The experimental results yield estimations of the limit-of-detection, affirming the potential of the developed platform in addressing critical public health challenges. These results not only highlight the efficacy of the ring resonator design in achieving high sensitivity but also demonstrate its applicability in rapid diagnostics, which is particularly vital in the context of global health crises. In conclusion, the thesis establishes a foundational understanding of ring resonators as powerful biosensing tools on silicon and silicon nitride platforms. The comparative analyses across various configurations, combined with practical testing for viral detection, affirm the versatility and effectiveness of these devices in real-world applications. The insights gained from this research lay the groundwork for future innovations in biosensing technology, potentially leading to the development of more sensitive, specific, and rapid diagnostic tools. Further exploration is justified to optimize fabrication processes and functionalization strategies, as well as to expand applications beyond viral detection to encompass a broader range of biomarkers, significantly enhancing the impact of ring resonators in clinical and environmental monitoring.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo - LA GRASTA Annabella.pdf
accesso aperto
Descrizione: 37 ciclo - LA GRASTA Annabella
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
5.41 MB
Formato
Adobe PDF
|
5.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.