Sharing mobility is changing users’ behaviour in urban areas, introducing a new way of movement. Vehicle-sharing systems are valid alternatives to the use of private modes of transport, since they allow users to cover short to medium distances with no emissions, promoting multimodality. There are two main types of vehicle-sharing systems: station-based and free-floating. Unlike former systems, free-floating ones are not based on stations and users can release a rented vehicle arbitrarily within a predefined operating area as close as possible to their destination and in an accessible place for others. Due to these characteristics, we have focused our research on free-floating systems that have significantly grown in the last few years, but they are also characterised by a number of issues related to safety features and urban decorum. One aspect of the evolution of these systems is the possibility (or obligation) to re-lease vehicles in geofence areas, which are similar to stations, with the aim of avoiding disorderly parking (urban decorum) that can be an obstacle to pedestrians and vehicle flows (safety features). To this end, we proposed three decision support models for the redesign of free-floating micromobility systems. The first model proposed the conversion from free-floating systems into a station-based one. In this case, users must drop off vehicles at the nearest station to their destinations. It is a bi-objective model with the aim of minimising the walking distances that users face to reach the nearest station and minimising the inequality of the service offered. The second model is an equity-based optimisation model for the location of parking areas in free-floating sharing systems. In this case, it is not mandatory to drop off vehicles in these zones, users are simply incentivised to do so. This model takes into consideration the minimisation of demand outside parking areas and the minimisation of inequality. The third model is based on the conversion of a free-floating system into a mixed one with mandatory geofence areas in which vehicles can only be dropped off at stations which are identified with painted and geofenced spaces and/or through beacons. In particular, we propose a multi-objective model that maximises station demand, minimises user walking distances, and minimises inequality in walking distance changes due to the conversion to a mixed system. The proposed models aim to increase the equity of free-floating systems, which should be equally accessible for the entire population. The solutions found are a trade-off between municipal council needs (to solve the illegal parking problem) and operator needs (to adopt systems with arbitrary parking, maximising the use of each vehicle). Further research may involve dynamic aspects in the proposed methodologies, such as the dynamic location of hubs and the dynamic relocation of vehicles and battery swap, with the aim of further improving the accessibility and equity of the system.
La mobilità condivisa sta cambiando il comportamento degli utenti nelle aree urbane, introducendo un nuovo modo di effettuare spostamenti. I sistemi di veicoli condivisi sono delle valide alternative all'uso di mezzi di trasporto privati, poiché consentono agli utenti di percorrere distanze medio-brevi senza emissioni, promuovendo la multimodalità. Esistono due tipologie principali di sistemi di veicoli condivisi: i sistemi a stazioni fisse (station-based) e quelli a flusso libero (free-floating). A differenza dei sistemi a stazioni fisse, i sistemi free-floating non sono basati su stazioni e gli utenti possono rilasciare arbitrariamente il veicolo noleggiato all'interno di un'area operativa predefinita, il più vicino possibile alla loro destinazione e in un luogo accessibile ad altri. La nostra ricerca si focalizza sui sistemi free-floating, che si sono sviluppati in modo significativo negli ultimi anni, ma sono anche caratterizzati da problematiche legate alla sicurezza e al decoro urbano. Una possibile evoluzione di questi sistemi è la possibilità (o l'obbligo) di rilasciare i veicoli in aree georeferenziate, che hanno una funzione simile alle stazioni, con l'obiettivo di evitare parcheggi disordinati che possono essere di ostacolo ai flussi pedonali e veicolari (pro-blematiche relative al decoro urbano e alla sicurezza). A questo scopo abbiamo proposto tre modelli di supporto alle decisioni per la riprogettazione di sistemi di micromobilità free-floating. Il primo modello propone la conversione dei sistemi free-floating in sistemi basati su stazioni. In questo caso, l'utente deve rilasciare il veicolo alla stazione più vicina alla propria destinazione. Si tratta di un modello bi-obiettivo con la finalità di minimizzare le distanze che gli utenti devono percorrere per raggiungere la stazione più vicina e di minimizzare l'ineguaglianza del servizio offerto. Il secondo modello è un modello di ottimizzazione basato sull'equità per la localizzazione delle aree di parcheggio nei sistemi di condivisione free-floating. In questo caso non è obbligatorio rilasciare i veicoli all’interno di queste zone, ma gli utenti sono più propensi a farlo in quanto localizzate in aree ad alta domanda. Questo modello prende in considerazione la minimizzazione della domanda al di fuori delle aree di parcheggio e la minimizzazione della disuguaglianza. Il terzo modello si basa sulla conversione di un sistema free-floating in un sistema misto con aree georeferenziate. All’interno di queste aree i veicoli possono essere rilasciati solo all’interno di stazioni identificate con spazi dipinti e georeferenziati e/o tramite beacon. In particolare, proponiamo un modello multi-obiettivo che massimizza la domanda di stazioni, minimizza le distanze a piedi degli utenti e minimizza l'ineguaglianza nelle variazioni delle distanze a piedi dovute alla conversione in un sistema misto. I modelli proposti hanno l’obiettivo di aumentare l'equità dei sistemi a flusso libero, che dovrebbero essere ugualmente accessibili a tutta la popolazione. Le soluzioni ottenute rappresentano un compromesso tra le esigenze delle amministrazioni comunali (risolvere il problema dei parcheggi abusivi) e quelle degli operatori (adottare sistemi con parcheggi arbitrari, massimizzando l'uso di ogni veicolo). Ulteriori ricerche potrebbero coinvolgere aspetti dinamici nelle metodologie proposte, come la localizzazione statica e dinamica degli hub e la ricollocazione dinamica dei veicoli e dello scambio di batterie, con l'obiettivo di migliorare ulteriormente l'accessibilità e l'equità del si-stema.
Decision support models for the fair redesign of free-floating micromobility sharing systems / De Bartolomeo, Simona. - ELETTRONICO. - (2025).
Decision support models for the fair redesign of free-floating micromobility sharing systems
De Bartolomeo, Simona
2025-01-01
Abstract
Sharing mobility is changing users’ behaviour in urban areas, introducing a new way of movement. Vehicle-sharing systems are valid alternatives to the use of private modes of transport, since they allow users to cover short to medium distances with no emissions, promoting multimodality. There are two main types of vehicle-sharing systems: station-based and free-floating. Unlike former systems, free-floating ones are not based on stations and users can release a rented vehicle arbitrarily within a predefined operating area as close as possible to their destination and in an accessible place for others. Due to these characteristics, we have focused our research on free-floating systems that have significantly grown in the last few years, but they are also characterised by a number of issues related to safety features and urban decorum. One aspect of the evolution of these systems is the possibility (or obligation) to re-lease vehicles in geofence areas, which are similar to stations, with the aim of avoiding disorderly parking (urban decorum) that can be an obstacle to pedestrians and vehicle flows (safety features). To this end, we proposed three decision support models for the redesign of free-floating micromobility systems. The first model proposed the conversion from free-floating systems into a station-based one. In this case, users must drop off vehicles at the nearest station to their destinations. It is a bi-objective model with the aim of minimising the walking distances that users face to reach the nearest station and minimising the inequality of the service offered. The second model is an equity-based optimisation model for the location of parking areas in free-floating sharing systems. In this case, it is not mandatory to drop off vehicles in these zones, users are simply incentivised to do so. This model takes into consideration the minimisation of demand outside parking areas and the minimisation of inequality. The third model is based on the conversion of a free-floating system into a mixed one with mandatory geofence areas in which vehicles can only be dropped off at stations which are identified with painted and geofenced spaces and/or through beacons. In particular, we propose a multi-objective model that maximises station demand, minimises user walking distances, and minimises inequality in walking distance changes due to the conversion to a mixed system. The proposed models aim to increase the equity of free-floating systems, which should be equally accessible for the entire population. The solutions found are a trade-off between municipal council needs (to solve the illegal parking problem) and operator needs (to adopt systems with arbitrary parking, maximising the use of each vehicle). Further research may involve dynamic aspects in the proposed methodologies, such as the dynamic location of hubs and the dynamic relocation of vehicles and battery swap, with the aim of further improving the accessibility and equity of the system.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo- DE BARTOLOMEO Simona.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.