A novel polymeric material was obtained through succinylation of pectin (S-Pec), resulting in greater stability, film-forming ability, transparency, swelling, and water retention capacity compared to native pectin (Pec). Spectroscopic techniques confirmed the success of the succinylation reaction performed on pectin, employing the reaction of galacturonic acid with succinic anhydride as a model reaction under similar experimental conditions. Moreover, fluorinated succinic anhydride was used to gain insight into the succinylation degree by X-ray Photoelectron Spectroscopy, and a different thermal behavior of S-Pec compared to Pec was confirmed through thermoanalytical characterization. Additionally, the effect of cross-linking either Pec or S-Pec in the presence of divalent cations (i.e., calcium or magnesium ions) on water retention capacity and stability was tested. A significant improvement in the ability to absorb and retain water or saline solution was found for magnesium-crosslinked succinylated pectin, while the in vitro hydrogel stability was higher for the calcium-crosslinked one. The obtained polymer represents a promising substrate for the development of natural-based superabsorbent polymers.
Synthesis and characterization of succinylated pectin hydrogels with enhanced swelling performances / Liotino, Stefano; Cometa, Stefania; Todisco, Stefano; Mastrorilli, Piero; Bengoechea, Carlos; Salomone, Antonio; De Giglio, Elvira. - In: REACTIVE & FUNCTIONAL POLYMERS. - ISSN 1381-5148. - STAMPA. - 214:(2025). [10.1016/j.reactfunctpolym.2025.106331]
Synthesis and characterization of succinylated pectin hydrogels with enhanced swelling performances
Todisco, Stefano;Mastrorilli, Piero;
2025
Abstract
A novel polymeric material was obtained through succinylation of pectin (S-Pec), resulting in greater stability, film-forming ability, transparency, swelling, and water retention capacity compared to native pectin (Pec). Spectroscopic techniques confirmed the success of the succinylation reaction performed on pectin, employing the reaction of galacturonic acid with succinic anhydride as a model reaction under similar experimental conditions. Moreover, fluorinated succinic anhydride was used to gain insight into the succinylation degree by X-ray Photoelectron Spectroscopy, and a different thermal behavior of S-Pec compared to Pec was confirmed through thermoanalytical characterization. Additionally, the effect of cross-linking either Pec or S-Pec in the presence of divalent cations (i.e., calcium or magnesium ions) on water retention capacity and stability was tested. A significant improvement in the ability to absorb and retain water or saline solution was found for magnesium-crosslinked succinylated pectin, while the in vitro hydrogel stability was higher for the calcium-crosslinked one. The obtained polymer represents a promising substrate for the development of natural-based superabsorbent polymers.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_Synthesis_and_characterization_of_succinylated_pectin_hydrogels_with_enhanced_swelling_performances_pdfeditoriale.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.5 MB
Formato
Adobe PDF
|
2.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

