Dissimilar metal joining (DMJ) by welding represents one of the most relevant and at the same time promising challenges in modern mechanical engineering. The increasing need to develop lighter, energy‑efficient systems with superior structural reliability has made this research topic crucial for numerous industrial sectors, particularly automotive, aerospace, energy, and oil & gas. In these fields, combining materials with complementary properties makes it possible to maximize functional performance, while minimizing the overall structural weight and increasing durability under severe operating conditions. The research activity documented in this thesis systematically addresses the metallurgical, technological, and mechanical issues that characterize dissimilar metal joining. This work demonstrates the feasibility of autogenous Cu/AISI 304 and Cu/Ti joints produced by Cold TIG on 1 mm-thick sheets, achieving full penetration, the absence of macroscopic defects, and minimal geometric distortion of the joint. A first aspect investigated concerns the microstructural transformations occurring in the heat affected zone (HAZ) and in the fusion region. Indeed, the presence of high thermal gradients promotes the formation of metastable and intermetallic phases (IMCs), which can compromise joint integrity and represents one of the main causes of reduced mechanical strength and poor toughness. A second critical element is the heat input, which plays a decisive role in controlling both weld-bead morphology and the formation of defects such as hot cracking, porosity, or lack of fusion. Through numerical simulations, machine learning investigations, and experimental analyses, it was possible to correlate the intensity and spatial distribution of heat with microstructural evolution, showing that process parameter optimization is essential to limit residual stresses, reduce the formation of undesirable phases, and consequently improve the joint properties. The thesis focused on the assessment of mechanical properties, with particular attention to tensile strength and bend performance of welded joints. It emerged that the overall joint strength is not solely a function of local metallurgy, but also depends on joint geometry, edge preparation, and the presence of microscopic defects, which when associated with surface discontinuities, act as crack initiation sites for crack propagation. Nevertheless, it was observed that adequate control of process parameters allows performance comparable to that of homogeneous joints to be achieved. This study introduces an element of novelty by exploring the Cold TIG process in the light of both consolidated configurations and the most recent developments in GTAW. Compared with conventional pulsed GTAW which, over the last two decades, has generated a broad and consolidated body of literature, Cold TIG appears to be far less investigated in terms of systematic studies and scientific publications. While numerous works are available for traditional pulsed GTAW, analyzing its effects on microstructure, residual stresses, and process efficiency in various metals and alloys, only sporadic references can be found for the Cold TIG variant.This disparity in attention highlights how Cold TIG, despite its significant potential (especially for thin) sheet welding and for reducing heat input in dissimilar joints, remains largely confined to an applicative and experimental interest, without having reached the same level of scientific and engineering maturity that characterizes conventional pulsed GTAW. Finally, the research highlights the future prospects of the Cold TIG process. Its capability to reduce the average heat input while maintaining good penetration makes it particularly suitable for contexts in which dimensional stability and microstructural control are essential, such as the joining of thin sheets or dissimilar metals. In conclusion, the work presented does not merely describe the state of the art, but provides an original contribution to understanding the mechanisms governing dissimilar metal welding. The integration of theoretical analyses, machine learning, numerical simulations, and experimental validation made it possible to outline concrete guidelines for process, parameter optimization, with the goal of developing joints that are reliable, safe, and durable. This study therefore fits within the framework of applied research aimed at the continuous improvement of joining techniques, laying the groundwork for further industrial and academic developments in an area of fundamental importance to contemporary mechanical engineering.
L’unione mediante saldatura di metalli dissimili (Dissimilar Metal Joining, DMJ) rappresenta una delle sfide più rilevanti e al contempo promettenti nel campo dell’ingegneria meccanica moderna. La crescente esigenza di sviluppare sistemi più leggeri, efficienti dal punto di vista energetico e caratterizzati da prestazioni superiori in termini di affidabilità strutturale ha reso questo tema di ricerca cruciale per numerosi settori industriali, in particolare l’automotive, l’aerospaziale, l’energetico e l’oil & gas. In tali ambiti, la possibilità di combinare materiali con proprietà complementari consente di massimizzare le prestazioni funzionali riducendo al minimo il peso complessivo delle strutture e incrementando la durabilità in condizioni operative severe. L’attività di ricerca documentata in questa tesi, affronta in modo sistematico le problematiche metallurgiche, tecnologiche e meccaniche che caratterizzano la giunzione di metalli dissimili. Questo lavoro dimostra la fattibilità della giunzione autogena Cu–AISI 304 e Cu–Ti mediante Cold TIG su lamiere da 1 mm, con piena penetrazione, assenza di difetti macroscopici e minima deformazione geometrica del giunto. Un primo aspetto analizzato riguarda le trasformazioni microstrutturali che avvengono nella Zona Termicamente Alterata (ZTA) e nell’area di fusione. La presenza di gradienti termici elevati, infatti, induce la formazione di fasi metastabili e intermetalliche (IMC) che possono compromettere l’integrità del giunto e costituisce una delle cause principali di ridotta resistenza meccanica e di scarsa tenacità. Un secondo elemento critico riguarda l’apporto termico, che svolge un ruolo determinante nel controllo sia della morfologia del cordone, sia della formazione di difetti come cricche a caldo, porosità o mancanza di fusione. Attraverso simulazioni numeriche, indagini di Machine Learning ed indagini sperimentali è stato possibile correlare l’intensità e la distribuzione del calore con l’evoluzione della microstruttura, evidenziando come l’ottimizzazione dei parametri di processo sia fondamentale per limitare le tensioni residue, ridurre la formazione di fasi indesiderate e migliorare perciò le proprietà del giunto stesso. Dal punto di vista meccanico, la tesi si è concentrata sulla valutazione delle proprietà statiche, con particolare attenzione alla resistenza a trazione ed alla piegatura dei giunti saldati. È emerso come la resistenza globale della giunzione non sia unicamente funzione della metallurgia locale, ma dipenda anche dalla geometria del giunto, dalla preparazione dei lembi e dalla presenza di difetti microscopici che in presenza di discontinuità superficiali fungono da inneschi per la propagazione di cricche. Tuttavia, è stato osservato che un adeguato controllo dei parametri di processo permette di ottenere prestazioni comparabili a quelle delle giunzioni omogenee. Questo studio introduce un elemento di novità esplorando il processo Cold-TIG alla luce sia delle configurazioni consolidate sia degli aggiornamenti più recenti del GTAW. Rispetto al GTAW pulsato convenzionale, che negli ultimi due decenni ha generato un corpus bibliografico ampio e consolidato, il Cold TIG appare un processo molto meno indagato in termini di studi sistematici e pubblicazioni scientifiche. Mentre per il GTAW pulsato tradizionale sono disponibili numerosi lavori che ne analizzano gli effetti sulla microstruttura, sulle tensioni residue e sull’efficienza del processo in diversi metalli e leghe, per la variante Cold TIG si trovano soltanto riferimenti sporadici e quasi mai trattazioni approfondite. Questa disparità di attenzione evidenzia come il Cold TIG, pur avendo un potenziale significativo soprattutto nella saldatura di lamiere sottili e nella riduzione dell’apporto termico nei giunti dissimili, rimanga ancora in gran parte confinato a un interesse applicativo e sperimentale, senza aver raggiunto lo stesso livello di maturità scientifica e ingegneristica che caratterizza il GTAW pulsato convenzionale. Infine, la ricerca mette in evidenza le prospettive future del processo Cold TIG. La sua capacità di ridurre l’apporto termico medio mantenendo una buona penetrazione la rende particolarmente adatta a contesti in cui la stabilità dimensionale e il controllo microstrutturale sono fondamentali, come nella giunzione di lamiere sottili o di metalli dissimili. In conclusione, il lavoro presentato non si limita a descrivere lo stato dell’arte, ma fornisce un contributo originale alla comprensione dei meccanismi che governano la saldatura di metalli dissimili. L’integrazione di analisi teoriche, di Machine Learning, di simulazioni numeriche e di verifiche sperimentali hanno permesso di delineare linee guida concrete per l’ottimizzazione dei parametri di processo, con l’obiettivo di sviluppare giunti affidabili, sicuri e duraturi. Questo studio si inserisce quindi nel quadro della ricerca applicata finalizzata al miglioramento continuo delle tecniche di giunzione, ponendo le basi per ulteriori sviluppi industriali e accademici in un settore di fondamentale importanza per l’ingegneria meccanica contemporanea.
Saldatura Cold TIG di metalli dissimili senza metallo d'apporto / Denora, Vito. - ELETTRONICO. - (2025).
Saldatura Cold TIG di metalli dissimili senza metallo d'apporto
DENORA, VITO
2025
Abstract
Dissimilar metal joining (DMJ) by welding represents one of the most relevant and at the same time promising challenges in modern mechanical engineering. The increasing need to develop lighter, energy‑efficient systems with superior structural reliability has made this research topic crucial for numerous industrial sectors, particularly automotive, aerospace, energy, and oil & gas. In these fields, combining materials with complementary properties makes it possible to maximize functional performance, while minimizing the overall structural weight and increasing durability under severe operating conditions. The research activity documented in this thesis systematically addresses the metallurgical, technological, and mechanical issues that characterize dissimilar metal joining. This work demonstrates the feasibility of autogenous Cu/AISI 304 and Cu/Ti joints produced by Cold TIG on 1 mm-thick sheets, achieving full penetration, the absence of macroscopic defects, and minimal geometric distortion of the joint. A first aspect investigated concerns the microstructural transformations occurring in the heat affected zone (HAZ) and in the fusion region. Indeed, the presence of high thermal gradients promotes the formation of metastable and intermetallic phases (IMCs), which can compromise joint integrity and represents one of the main causes of reduced mechanical strength and poor toughness. A second critical element is the heat input, which plays a decisive role in controlling both weld-bead morphology and the formation of defects such as hot cracking, porosity, or lack of fusion. Through numerical simulations, machine learning investigations, and experimental analyses, it was possible to correlate the intensity and spatial distribution of heat with microstructural evolution, showing that process parameter optimization is essential to limit residual stresses, reduce the formation of undesirable phases, and consequently improve the joint properties. The thesis focused on the assessment of mechanical properties, with particular attention to tensile strength and bend performance of welded joints. It emerged that the overall joint strength is not solely a function of local metallurgy, but also depends on joint geometry, edge preparation, and the presence of microscopic defects, which when associated with surface discontinuities, act as crack initiation sites for crack propagation. Nevertheless, it was observed that adequate control of process parameters allows performance comparable to that of homogeneous joints to be achieved. This study introduces an element of novelty by exploring the Cold TIG process in the light of both consolidated configurations and the most recent developments in GTAW. Compared with conventional pulsed GTAW which, over the last two decades, has generated a broad and consolidated body of literature, Cold TIG appears to be far less investigated in terms of systematic studies and scientific publications. While numerous works are available for traditional pulsed GTAW, analyzing its effects on microstructure, residual stresses, and process efficiency in various metals and alloys, only sporadic references can be found for the Cold TIG variant.This disparity in attention highlights how Cold TIG, despite its significant potential (especially for thin) sheet welding and for reducing heat input in dissimilar joints, remains largely confined to an applicative and experimental interest, without having reached the same level of scientific and engineering maturity that characterizes conventional pulsed GTAW. Finally, the research highlights the future prospects of the Cold TIG process. Its capability to reduce the average heat input while maintaining good penetration makes it particularly suitable for contexts in which dimensional stability and microstructural control are essential, such as the joining of thin sheets or dissimilar metals. In conclusion, the work presented does not merely describe the state of the art, but provides an original contribution to understanding the mechanisms governing dissimilar metal welding. The integration of theoretical analyses, machine learning, numerical simulations, and experimental validation made it possible to outline concrete guidelines for process, parameter optimization, with the goal of developing joints that are reliable, safe, and durable. This study therefore fits within the framework of applied research aimed at the continuous improvement of joining techniques, laying the groundwork for further industrial and academic developments in an area of fundamental importance to contemporary mechanical engineering.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

