This paper deals with the Klein-Gordon-Maxwell system in a bounded spatial domain with a nonuniform coupling. We discuss the existence of standing waves in equilibrium with a purely electrostatic field, assuming homogeneous Dirichlet boundary conditions on the matter field and nonhomogeneous Neumannboundary conditions on the electric potential.Under suitable conditionswe prove existence and nonexistence results. Since the system is variational, we use Ljusternik-Schnirelmann theory
Nonautonomous Klein-Gordon-Maxwell systems in a bounded domain / D'Avenia, Pietro; Pisani, Lorenzo; Siciliano, Gaetano. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 3:S1(2014), pp. s37-s45. [10.1515/anona-2014-0009]
Nonautonomous Klein-Gordon-Maxwell systems in a bounded domain
D'AVENIA, Pietro;
2014-01-01
Abstract
This paper deals with the Klein-Gordon-Maxwell system in a bounded spatial domain with a nonuniform coupling. We discuss the existence of standing waves in equilibrium with a purely electrostatic field, assuming homogeneous Dirichlet boundary conditions on the matter field and nonhomogeneous Neumannboundary conditions on the electric potential.Under suitable conditionswe prove existence and nonexistence results. Since the system is variational, we use Ljusternik-Schnirelmann theoryI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.