In this paper, we prove a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal nonlinearities. We apply our result to the nonlinear Schrodinger-Maxwell system in R(3) and to the nonlinear elliptic Kirchhoff equation in R(N) assuming on the local nonlinearity the general hypotheses introduced by Berestycki and Lions

Multiple critical points for a class of nonlinear functionals / Azzollini, Antonio; D'Avenia, Pietro; Pomponio, Alessio. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 190:3(2011), pp. 507-523. [10.1007/s10231-010-0160-3]

Multiple critical points for a class of nonlinear functionals

D'AVENIA, Pietro;POMPONIO, Alessio
2011-01-01

Abstract

In this paper, we prove a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal nonlinearities. We apply our result to the nonlinear Schrodinger-Maxwell system in R(3) and to the nonlinear elliptic Kirchhoff equation in R(N) assuming on the local nonlinearity the general hypotheses introduced by Berestycki and Lions
2011
https://rd.springer.com/article/10.1007/s10231-010-0160-3
Multiple critical points for a class of nonlinear functionals / Azzollini, Antonio; D'Avenia, Pietro; Pomponio, Alessio. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 190:3(2011), pp. 507-523. [10.1007/s10231-010-0160-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/52015
Citazioni
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 56
social impact