An existence and multiplicity result for periodic trajectories on stationary Lorentzian manifolds, possibly with boundary, whose proof is based on a Morse theory approach is presented. A Lorentzian manifold is a smooth connected finite-dimensional manifold M equipped with a (0,2) tensor field g such that for any z∈M g(z) [·,·] is a nondegenerate symmetric bilinear form on the tangent space TzM having exactly one negative eigenvalue. Moreover, relativistic spacetimes are a particular class of Lorentzian manifolds of dimension four

Periodic trajectories on stationary Lorentzian manifolds / Bartolo, R. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 43:7(2001), pp. 883-903. [10.1016/S0362-546X(99)00246-1]

Periodic trajectories on stationary Lorentzian manifolds

Bartolo R
2001-01-01

Abstract

An existence and multiplicity result for periodic trajectories on stationary Lorentzian manifolds, possibly with boundary, whose proof is based on a Morse theory approach is presented. A Lorentzian manifold is a smooth connected finite-dimensional manifold M equipped with a (0,2) tensor field g such that for any z∈M g(z) [·,·] is a nondegenerate symmetric bilinear form on the tangent space TzM having exactly one negative eigenvalue. Moreover, relativistic spacetimes are a particular class of Lorentzian manifolds of dimension four
2001
Periodic trajectories on stationary Lorentzian manifolds / Bartolo, R. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 43:7(2001), pp. 883-903. [10.1016/S0362-546X(99)00246-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5214
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact