A method for predicting the onset of acoustically driven combustion instabilities in gas turbine combustor is examined. The basic idea is that the governing equations of the acoustic waves can be coupled with a flame heat release model and solved in the frequency domain. The paper shows that a complex eigenvalue problem is obtained that can be solved numerically by implementing the governing equations in a finite element code. This procedure allows one to identify the frequencies at which thermo-acoustic instabilities are expected and the growth rate of the pressure oscillations, at the onset of instability, when the hypothesis of linear behavior of the acoustic waves can be applied. The method can be applied virtually to any three-dimensional geometry, provided the necessary computational resources that are, anyway, much less than those required by computational fluid dynamics methods proposed for analyzing the combustion chamber under instability condition. Furthermore, in comparison with the "lumped" approach that characterizes popular acoustics networks, the proposed method allows one for much more flexibility in defining the geometry of the combustion chamber. The paper shows that different types of heat release laws, for instance, heat release concentrated in a flame sheet, as well as distributed in a larger domain, can be adopted. Moreover, experimentally or numerically determined flame transfer functions, giving the response of heat release to acoustic velocity fluctuations, can be incorporated in the model. To establish proof of concept, the method is validated at the beginning against simple test cases taken from literature. Over the frequency range considered, frequencies and growth rates both of stable and unstable eigenmodes are accurately evaluated. Then the method is applied to a much more complex annular combustor geometry in order to evaluate frequencies and growth rates of the unstable modes and to show how the variation in the parameters of the heat release law can influence the transition to instability.
A Finite Element Method for Three-Dimensional Analysis of Thermo-acoustic Combustion Instability / Camporeale, Sergio Mario; Fortunato, Bernardo; Campa, G.. - In: JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. - ISSN 0742-4795. - 133:1(2011). [10.1115/1.4000606]
A Finite Element Method for Three-Dimensional Analysis of Thermo-acoustic Combustion Instability
CAMPOREALE, Sergio Mario;FORTUNATO, Bernardo;
2011-01-01
Abstract
A method for predicting the onset of acoustically driven combustion instabilities in gas turbine combustor is examined. The basic idea is that the governing equations of the acoustic waves can be coupled with a flame heat release model and solved in the frequency domain. The paper shows that a complex eigenvalue problem is obtained that can be solved numerically by implementing the governing equations in a finite element code. This procedure allows one to identify the frequencies at which thermo-acoustic instabilities are expected and the growth rate of the pressure oscillations, at the onset of instability, when the hypothesis of linear behavior of the acoustic waves can be applied. The method can be applied virtually to any three-dimensional geometry, provided the necessary computational resources that are, anyway, much less than those required by computational fluid dynamics methods proposed for analyzing the combustion chamber under instability condition. Furthermore, in comparison with the "lumped" approach that characterizes popular acoustics networks, the proposed method allows one for much more flexibility in defining the geometry of the combustion chamber. The paper shows that different types of heat release laws, for instance, heat release concentrated in a flame sheet, as well as distributed in a larger domain, can be adopted. Moreover, experimentally or numerically determined flame transfer functions, giving the response of heat release to acoustic velocity fluctuations, can be incorporated in the model. To establish proof of concept, the method is validated at the beginning against simple test cases taken from literature. Over the frequency range considered, frequencies and growth rates both of stable and unstable eigenmodes are accurately evaluated. Then the method is applied to a much more complex annular combustor geometry in order to evaluate frequencies and growth rates of the unstable modes and to show how the variation in the parameters of the heat release law can influence the transition to instability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.