Long-term evolution (LTE) femtocells represent a very promising answer to the ever growing bandwidth demand of mobile applications. They can be easily deployed without requiring a centralized planning, to provide high data rate connectivity with a limited coverage. In this way, the overall capacity of the cellular network can be greatly improved. At the same time, the uncoordinated setup of femtocells poses new issues that require a deep and thorough analysis before spreading this technology worldwide. Unfortunately, to the best of our knowledge, no accurate simulation tools are freely available for enabling this kind of investigation. Thus, we present in this study a simulation tool for LTE femtocells, implemented as a module of the emerging open source LTE-sim framework. It encompasses heterogeneous scenarios with both macro and femtocells, spectrum allocation techniques, user mobility, femtocell access policies, and several other features related to this promising technology. After reviewing the status of the art on LTE femtocells, we detail the description of the module that we propose with a major emphasis on the newly devised loss models for indoor scenarios, the new network topology objects, and the most significant enhancements to the simulator protocol stack. Furthermore, to provide a clear understanding of the practical utility of this new simulator, we investigate two indoor and urban scenarios. A scalability test is also presented to demonstrate the efficiency of the proposed tool in terms of processing requirements. All presented results suggest that this new module can be very interesting for the research community, due to its great flexibility and limited computational cost.
On accurate simulations of LTE femtocells using an open source simulator / Capozzi, F; Piro, Giuseppe; Grieco, Luigi Alfredo; Boggia, Gennaro; Camarda, Pietro. - In: EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING. - ISSN 1687-1472. - STAMPA. - (2012). [10.1186/1687-1499-2012-328]
On accurate simulations of LTE femtocells using an open source simulator
PIRO, Giuseppe;GRIECO, Luigi Alfredo;BOGGIA, Gennaro;CAMARDA, Pietro
2012-01-01
Abstract
Long-term evolution (LTE) femtocells represent a very promising answer to the ever growing bandwidth demand of mobile applications. They can be easily deployed without requiring a centralized planning, to provide high data rate connectivity with a limited coverage. In this way, the overall capacity of the cellular network can be greatly improved. At the same time, the uncoordinated setup of femtocells poses new issues that require a deep and thorough analysis before spreading this technology worldwide. Unfortunately, to the best of our knowledge, no accurate simulation tools are freely available for enabling this kind of investigation. Thus, we present in this study a simulation tool for LTE femtocells, implemented as a module of the emerging open source LTE-sim framework. It encompasses heterogeneous scenarios with both macro and femtocells, spectrum allocation techniques, user mobility, femtocell access policies, and several other features related to this promising technology. After reviewing the status of the art on LTE femtocells, we detail the description of the module that we propose with a major emphasis on the newly devised loss models for indoor scenarios, the new network topology objects, and the most significant enhancements to the simulator protocol stack. Furthermore, to provide a clear understanding of the practical utility of this new simulator, we investigate two indoor and urban scenarios. A scalability test is also presented to demonstrate the efficiency of the proposed tool in terms of processing requirements. All presented results suggest that this new module can be very interesting for the research community, due to its great flexibility and limited computational cost.File | Dimensione | Formato | |
---|---|---|---|
1687-1499-2012-328.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.