In this paper the equation $ -\Delta u+a(x)u=|u|^{p-1}u \mbox{ in }\R^N$ is considered, when $N \ge2$, $p>1,\ p<{\frac{N+2}{N-2}},$ if $N\ge 3.$ Assuming that the potential $a(x)$ is a positive function belonging to $L^{N/2}_ {loc}(\R^N),$ such that $a(x)\to a_\infty > 0, \ \mbox{as} \ |x|\rightarrow \infty$, and that satisfies slow decay assumptions, but not requiring any symmetry property, the existence of infinitely many positive solutions, by purely variational methods, is proved. The shape of the solutions is described and, furthermore, their asymptotic behavior when $|a(x) - a_\infty|_ {L^ {N/2}_ {loc}(\R^N)} \to 0$.

Infinitely many positive solutions to some scalar field equations with non-symmetric coefficients

CERAMI, Giovanna;SOLIMINI, Sergio Fausto
2013-01-01

Abstract

In this paper the equation $ -\Delta u+a(x)u=|u|^{p-1}u \mbox{ in }\R^N$ is considered, when $N \ge2$, $p>1,\ p<{\frac{N+2}{N-2}},$ if $N\ge 3.$ Assuming that the potential $a(x)$ is a positive function belonging to $L^{N/2}_ {loc}(\R^N),$ such that $a(x)\to a_\infty > 0, \ \mbox{as} \ |x|\rightarrow \infty$, and that satisfies slow decay assumptions, but not requiring any symmetry property, the existence of infinitely many positive solutions, by purely variational methods, is proved. The shape of the solutions is described and, furthermore, their asymptotic behavior when $|a(x) - a_\infty|_ {L^ {N/2}_ {loc}(\R^N)} \to 0$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/52331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact