We determine all point-sets of minimum size in PG(2,q), q odd that meet every external line to a conic in PG(2,q). The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of PGL(2,q).

Blocking sets of external lines to a conic in PG(2,q), q odd / Aguglia, Angela; Korchmáros, G.. - In: COMBINATORICA. - ISSN 0209-9683. - 26:4(2006), pp. 379-394. [10.1007/s00493-006-0021-2]

Blocking sets of external lines to a conic in PG(2,q), q odd

AGUGLIA, Angela;
2006-01-01

Abstract

We determine all point-sets of minimum size in PG(2,q), q odd that meet every external line to a conic in PG(2,q). The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of PGL(2,q).
2006
Blocking sets of external lines to a conic in PG(2,q), q odd / Aguglia, Angela; Korchmáros, G.. - In: COMBINATORICA. - ISSN 0209-9683. - 26:4(2006), pp. 379-394. [10.1007/s00493-006-0021-2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5319
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 15
social impact