Let pi be a projective plane of order 15 with an oval Omega. Assume pi admits a collineation group G fixing Omega such that G is isomorphic to A(4) and the action of G on Omega yields precisely two orbits Omega(1) and Omega(2) with \Omega(2)\ = 4. We prove that the Buekenhout oval arising from Omega cannot exist.

On the non-existence of a projective plane of order 15 with an A 4-invariant oval / Aguglia, A.; Bonisoli, A.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 288:1-3(2004), pp. 1-7. [10.1016/j.disc.2004.06.018]

On the non-existence of a projective plane of order 15 with an A 4-invariant oval

Aguglia, A.;
2004-01-01

Abstract

Let pi be a projective plane of order 15 with an oval Omega. Assume pi admits a collineation group G fixing Omega such that G is isomorphic to A(4) and the action of G on Omega yields precisely two orbits Omega(1) and Omega(2) with \Omega(2)\ = 4. We prove that the Buekenhout oval arising from Omega cannot exist.
2004
https://www.sciencedirect.com/science/article/pii/S0012365X04003322?via%3Dihub
On the non-existence of a projective plane of order 15 with an A 4-invariant oval / Aguglia, A.; Bonisoli, A.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 288:1-3(2004), pp. 1-7. [10.1016/j.disc.2004.06.018]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5389
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact