We are interested in the existence of infinitely many positive solutions of the Schrodinger-Poisson system {-Delta u + u + V(vertical bar z vertical bar phi u = vertical bar u vertical bar(p-1) u, x is an element of R(3) {(-)Delta phi = V(vertical bar x vertical bar)u(2), x is an element of R(3), where V(vertical bar x vertical bar) is a positive bounded function, 1 < p < 5 and V(r), r = vertical bar x vertical bar, has the following decay property: V(r) = a/r(m) + 0 (1/r(m+theta)) with a > 0, m > 3/2, theta > 0. The solutions obtained are non-radial

Infinitely many positive solutions for a Schrödinger-Poisson system / D'Avenia, Pietro; Pomponio, Alessio; Vaira, Giusi. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 74:16(2011), pp. 5705-5721. [10.1016/j.na.2011.05.057]

Infinitely many positive solutions for a Schrödinger-Poisson system

D'AVENIA, Pietro;POMPONIO, Alessio;
2011-01-01

Abstract

We are interested in the existence of infinitely many positive solutions of the Schrodinger-Poisson system {-Delta u + u + V(vertical bar z vertical bar phi u = vertical bar u vertical bar(p-1) u, x is an element of R(3) {(-)Delta phi = V(vertical bar x vertical bar)u(2), x is an element of R(3), where V(vertical bar x vertical bar) is a positive bounded function, 1 < p < 5 and V(r), r = vertical bar x vertical bar, has the following decay property: V(r) = a/r(m) + 0 (1/r(m+theta)) with a > 0, m > 3/2, theta > 0. The solutions obtained are non-radial
2011
http://www.sciencedirect.com/science/article/pii/S0362546X11003518
Infinitely many positive solutions for a Schrödinger-Poisson system / D'Avenia, Pietro; Pomponio, Alessio; Vaira, Giusi. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 74:16(2011), pp. 5705-5721. [10.1016/j.na.2011.05.057]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/55693
Citazioni
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact