In this paper the existence of infinitely many eigenvalues for the non linear boundary value problem {Mathematical expression} Ωt Rn bounded and {Mathematical expression} (λ1, λ2)where λ1and λ2are the first and the second eigenvalue of - Δ respectively. The eigenvalues are characterized by the critical levels of a suitable functional on a smooth unbounded manifold. The usual method is not applicable because the functional is not positive definite and the Palais-Smale condition is not satisfied. We applies a technique introduced in a preceding paper [3]
Sull'esistenza di autovalori per un problema al contorno non lineare / Cerami, Giovanna. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 124:1(1980), pp. 161-179. [10.1007/BF01795391]
Sull'esistenza di autovalori per un problema al contorno non lineare
Giovanna Cerami
1980-01-01
Abstract
In this paper the existence of infinitely many eigenvalues for the non linear boundary value problem {Mathematical expression} Ωt Rn bounded and {Mathematical expression} (λ1, λ2)where λ1and λ2are the first and the second eigenvalue of - Δ respectively. The eigenvalues are characterized by the critical levels of a suitable functional on a smooth unbounded manifold. The usual method is not applicable because the functional is not positive definite and the Palais-Smale condition is not satisfied. We applies a technique introduced in a preceding paper [3]I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.