We look for three-dimensional vortex-solutions, which have finite energy and are stationary solutions, of Klein-Gordon-Maxwell-Proca type systems of equations. We prove the existence of three-dimensional cylindrically symmetric vortex-solutions having a least possible energy among all symmetric solutions. Moreover we show that, if the Proca mass disappears, then the solutions tend to a solution of the Klein-Gordon-Maxwell system.

Vortex ground states for Klein-Gordon-Maxwell-Proca type systems / D'Avenia, Pietro; Mederski, J.; Pomponio, Alessio. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 58:4(2017). [10.1063/1.4982038]

Vortex ground states for Klein-Gordon-Maxwell-Proca type systems

D'AVENIA, Pietro;POMPONIO, Alessio
2017-01-01

Abstract

We look for three-dimensional vortex-solutions, which have finite energy and are stationary solutions, of Klein-Gordon-Maxwell-Proca type systems of equations. We prove the existence of three-dimensional cylindrically symmetric vortex-solutions having a least possible energy among all symmetric solutions. Moreover we show that, if the Proca mass disappears, then the solutions tend to a solution of the Klein-Gordon-Maxwell system.
2017
http://aip.scitation.org/doi/10.1063/1.4982038
Vortex ground states for Klein-Gordon-Maxwell-Proca type systems / D'Avenia, Pietro; Mederski, J.; Pomponio, Alessio. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 58:4(2017). [10.1063/1.4982038]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/62585
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact