In this paper a Fermat principle for Lorentzian manifold endowed with a timelike Killing vector field is formulated. This principle is applied to obtain existence and multiplicity results on the number of light rays joining an event with an integral curve of the Killing vector field.

An intrinsic Fermat principle on stationary Lorentzian manifolds and applications / Caponio, Erasmo. - In: DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. - ISSN 0926-2245. - STAMPA. - 16:3(2002), pp. 245-265. [10.1016/S0926-2245(02)00069-4]

An intrinsic Fermat principle on stationary Lorentzian manifolds and applications

Caponio, Erasmo
2002-01-01

Abstract

In this paper a Fermat principle for Lorentzian manifold endowed with a timelike Killing vector field is formulated. This principle is applied to obtain existence and multiplicity results on the number of light rays joining an event with an integral curve of the Killing vector field.
2002
An intrinsic Fermat principle on stationary Lorentzian manifolds and applications / Caponio, Erasmo. - In: DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. - ISSN 0926-2245. - STAMPA. - 16:3(2002), pp. 245-265. [10.1016/S0926-2245(02)00069-4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6392
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact