Given a globally hyperbolic spacetime endowed with a complete lightlike Killing vector field and a complete Cauchy hypersurface, we characterize the points which can be connected by geodesics. A straightforward consequence is the geodesic connectedness of globally hyperbolic generalized plane waves with a complete Cauchy hypersurface.

Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field / Bartolo, Rossella; Candela, Am; Flores, Jl. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 33:1(2017), pp. 1-28. [10.4171/rmi/926]

Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field

BARTOLO, Rossella;
2017-01-01

Abstract

Given a globally hyperbolic spacetime endowed with a complete lightlike Killing vector field and a complete Cauchy hypersurface, we characterize the points which can be connected by geodesics. A straightforward consequence is the geodesic connectedness of globally hyperbolic generalized plane waves with a complete Cauchy hypersurface.
2017
Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field / Bartolo, Rossella; Candela, Am; Flores, Jl. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 33:1(2017), pp. 1-28. [10.4171/rmi/926]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6688
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact