This paper is motivated by a gauged Schrodinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem -Delta u(x) + (omega + h(2)(vertical bar x vertical bar) /vertical bar x vertical bar(2) + integral(infinity)(vertical bar x vertical bar) h(s)/s u(2)(s) ds )u(x) = vertical bar u(x)vertical bar(p-1) u(x), where h(r) = 1/2 integral(r)(0) su(2)(s) ds. This problem is the Euler-Lagrange equation of a certain energy functional. We study the global behavior of that functional. We show that for p is an element of (1.3), the functional may be bounded from below or not, depending on omega. Quite surprisingly, the threshold value for omega is explicit. From this study we prove existence and non-existence of positive solutio

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation.

POMPONIO, Alessio;
2015-01-01

Abstract

This paper is motivated by a gauged Schrodinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem -Delta u(x) + (omega + h(2)(vertical bar x vertical bar) /vertical bar x vertical bar(2) + integral(infinity)(vertical bar x vertical bar) h(s)/s u(2)(s) ds )u(x) = vertical bar u(x)vertical bar(p-1) u(x), where h(r) = 1/2 integral(r)(0) su(2)(s) ds. This problem is the Euler-Lagrange equation of a certain energy functional. We study the global behavior of that functional. We show that for p is an element of (1.3), the functional may be bounded from below or not, depending on omega. Quite surprisingly, the threshold value for omega is explicit. From this study we prove existence and non-existence of positive solutio
File in questo prodotto:
File Dimensione Formato  
Pomponio-Ruiz.pdf

accesso aperto

Descrizione: Accepted manuscript
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati
Dimensione 408.57 kB
Formato Adobe PDF
408.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 67
social impact