Three new infinite families of hyperovals on the generalized quadrangle H(3,q2) (q=ph, p a prime) of sizes 6(q+1), 12(q+1) 2 (if q>7) and 6(q+1)2 (if p>3) are constructed. Furthermore they turn out to be invariant under the action of a linear collineation group of order 6(q+1)3 that fixes no point or line in a secant plane of H(3,q2). In particular the hyperovals of size 6(q+1)2 are transitive. © 2013 Elsevier B.V. All rights reserved.
Hyperovals on H (3, q2) left invariant by a group of order 6 (q+1)3 / Pavese, Francesco. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 313:14(2013), pp. 1543-1546. [10.1016/j.disc.2013.03.022]
Hyperovals on H (3, q2) left invariant by a group of order 6 (q+1)3
PAVESE, Francesco
2013-01-01
Abstract
Three new infinite families of hyperovals on the generalized quadrangle H(3,q2) (q=ph, p a prime) of sizes 6(q+1), 12(q+1) 2 (if q>7) and 6(q+1)2 (if p>3) are constructed. Furthermore they turn out to be invariant under the action of a linear collineation group of order 6(q+1)3 that fixes no point or line in a secant plane of H(3,q2). In particular the hyperovals of size 6(q+1)2 are transitive. © 2013 Elsevier B.V. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.