The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem {(−Δ)su=|u|p−2u+h(x)u=0inΩ,onRn∖Ω, where s∈(0,1), n>2s, Ω is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (−Δ)s is the non-local Laplacian operator, 2<p<2∗s and h∈L2(Ω). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential.

Infinitely many solutions for non--local problems with broken symmetry / Bartolo, R.; De Nàpoli, P.; Salvatore, Addolorata. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 7:3(2018), pp. 353-364. [10.1515/anona-2016-0106]

Infinitely many solutions for non--local problems with broken symmetry

Bartolo, R.;Salvatore, Addolorata
2018-01-01

Abstract

The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem {(−Δ)su=|u|p−2u+h(x)u=0inΩ,onRn∖Ω, where s∈(0,1), n>2s, Ω is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (−Δ)s is the non-local Laplacian operator, 2
2018
https://www.degruyter.com/view/j/anona.ahead-of-print/anona-2016-0106/anona-2016-0106.xml
Infinitely many solutions for non--local problems with broken symmetry / Bartolo, R.; De Nàpoli, P.; Salvatore, Addolorata. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 7:3(2018), pp. 353-364. [10.1515/anona-2016-0106]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/81864
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact