The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem {(−Δ)su=|u|p−2u+h(x)u=0inΩ,onRn∖Ω, where s∈(0,1), n>2s, Ω is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (−Δ)s is the non-local Laplacian operator, 2<p<2∗s and h∈L2(Ω). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential.
Infinitely many solutions for non--local problems with broken symmetry / Bartolo, R.; De Nàpoli, P.; Salvatore, Addolorata. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - STAMPA. - 7:3(2018), pp. 353-364. [10.1515/anona-2016-0106]
Infinitely many solutions for non--local problems with broken symmetry
Bartolo, R.;Salvatore, Addolorata
2018-01-01
Abstract
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem {(−Δ)su=|u|p−2u+h(x)u=0inΩ,onRn∖Ω, where s∈(0,1), n>2s, Ω is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (−Δ)s is the non-local Laplacian operator, 2
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.