The optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow disturbance variables and the forcing term as a summation of temporal modes, the linear convective instability mechanism associated with the response leading to the maximum gain in energy is theoretically investigated. Such a response is driven by a pseudoresonance of temporal modes due to the non-normality of the underlying linearized evolution operator. In particular, the considered expansion on a limited number of modes is found able to accurately simulate the linear instability mechanism, as suggested by a comparison between the global linear stability analysis and a linearized direct numerical simulation. Furthermore, the dependence of such a mechanism on the Reynolds number and the adverse pressure gradient is investigated, outlining a physical description of the destabilization of the flow induced by the rolling up of the shear layer. Therefore, the convective character of the problem suggests that the considered flat plate separated flows may act as a selective noise amplifier. In order to verify such a possibility, the responses of the flow to the optimal forcing and to a small level of noise are compared, and their connection to the onset of self-excited vortices observed in literature is investigated. For that purpose, a nonlinear direct numerical simulation is performed, which is initialized by a random noise superposed to the base flow at the inflow boundary points. The band of excited frequencies as well as the associated peak match with the ones computed by the asymptotic global analysis. Finally, the connection between the onset of unsteadiness and the optimal response is further supported by a comparison between the optimal circular frequency and a typical Strouhal number predicted by numerical simulations of previous authors in similar cases. © 2009 American Institute of Physics.
Sensitivity and optimal forcing response in separated boundary layer flows / Alizard, Frédéric; Cherubini, Stefania; Robinet, Jean Christophe. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 21:6(2009). [10.1063/1.3153908]
Sensitivity and optimal forcing response in separated boundary layer flows
CHERUBINI, Stefania;
2009-01-01
Abstract
The optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow disturbance variables and the forcing term as a summation of temporal modes, the linear convective instability mechanism associated with the response leading to the maximum gain in energy is theoretically investigated. Such a response is driven by a pseudoresonance of temporal modes due to the non-normality of the underlying linearized evolution operator. In particular, the considered expansion on a limited number of modes is found able to accurately simulate the linear instability mechanism, as suggested by a comparison between the global linear stability analysis and a linearized direct numerical simulation. Furthermore, the dependence of such a mechanism on the Reynolds number and the adverse pressure gradient is investigated, outlining a physical description of the destabilization of the flow induced by the rolling up of the shear layer. Therefore, the convective character of the problem suggests that the considered flat plate separated flows may act as a selective noise amplifier. In order to verify such a possibility, the responses of the flow to the optimal forcing and to a small level of noise are compared, and their connection to the onset of self-excited vortices observed in literature is investigated. For that purpose, a nonlinear direct numerical simulation is performed, which is initialized by a random noise superposed to the base flow at the inflow boundary points. The band of excited frequencies as well as the associated peak match with the ones computed by the asymptotic global analysis. Finally, the connection between the onset of unsteadiness and the optimal response is further supported by a comparison between the optimal circular frequency and a typical Strouhal number predicted by numerical simulations of previous authors in similar cases. © 2009 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.