The degenerate Neumann problem ⎧⎩⎨⎪⎪⎪⎪⎪⎪ ∑i,j=1naij(x)∂2u∂xi∂xj=f(x,u,Du) a(x)∂u∂v+b(x)u=φ(x)in Ω,on Γ is studied in the case where a(x) and b(x) are non-negative functions on Γ such that a(x)+b(x)>0 on Γ. A classical existence and uniqueness theorem in the Hölder space C2+α(Ω¯) is proved under suitable regularity and structure conditions on the data.
A degenerate Neumann problem for quasilinear elliptic equations / Taira, K.; Palagachev, D. K.; Popivanov, P. R.. - In: TOKYO JOURNAL OF MATHEMATICS. - ISSN 0387-3870. - STAMPA. - 23:1(2000), pp. 227-234. [10.3836/tjm/1255958817]
A degenerate Neumann problem for quasilinear elliptic equations
Palagachev, D. K.;
2000-01-01
Abstract
The degenerate Neumann problem ⎧⎩⎨⎪⎪⎪⎪⎪⎪ ∑i,j=1naij(x)∂2u∂xi∂xj=f(x,u,Du) a(x)∂u∂v+b(x)u=φ(x)in Ω,on Γ is studied in the case where a(x) and b(x) are non-negative functions on Γ such that a(x)+b(x)>0 on Γ. A classical existence and uniqueness theorem in the Hölder space C2+α(Ω¯) is proved under suitable regularity and structure conditions on the data.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.