A dynamical network (consisting of a time-evolving wiring of interactions among a group of random walkers) is introduced to model the spread of an infectious disease in a population of mobile individuals. We investigate the main properties of this model, and show that peculiar features arise when individuals are allowed to perform long-distance jumps. Such peculiarities are captured and conveniently quantified by a series of appropriate parameters able to highlight the structural differences emerging in the networks when long-distance jumps are combined with local random walk processes.

Dynamical Network Model of Infective Mobile Agents

RIZZO, Alessandro;
2006

Abstract

A dynamical network (consisting of a time-evolving wiring of interactions among a group of random walkers) is introduced to model the spread of an infectious disease in a population of mobile individuals. We investigate the main properties of this model, and show that peculiar features arise when individuals are allowed to perform long-distance jumps. Such peculiarities are captured and conveniently quantified by a series of appropriate parameters able to highlight the structural differences emerging in the networks when long-distance jumps are combined with local random walk processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/9016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 71
social impact