We consider the Kudryashov-Sinelshchikov equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to the entropy ones of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting

A singular limit problem for the Kudryashov-Sinelshchikov equation / Coclite, Giuseppe Maria; di Ruvo, L.. - In: ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 1521-4001. - 97:9(2017), pp. 1020-1033. [10.1002/zamm.201500146]

A singular limit problem for the Kudryashov-Sinelshchikov equation

COCLITE, Giuseppe Maria
;
2017-01-01

Abstract

We consider the Kudryashov-Sinelshchikov equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to the entropy ones of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting
2017
http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500146/full
A singular limit problem for the Kudryashov-Sinelshchikov equation / Coclite, Giuseppe Maria; di Ruvo, L.. - In: ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 1521-4001. - 97:9(2017), pp. 1020-1033. [10.1002/zamm.201500146]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/93827
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact