In this paper an effective procedure that allows evaluating the dimensions of corrosive flaws on non-accessible pipes is presented. The method is based on the propagation of ultrasound waves, analyzing the informative content of echoes reflected by defects. The approach exploits the properties of the wavelet transform to represent signals by a reduced form. The coefficients of this representation are selected properly by making use of a filter method followed by a genetic algorithm and, then, they feed a neural network classifier which evaluates the dimensions of defects on the pipe under test. Numerical results show low error rates in the evaluation of both angular and axial extension of each flaw. The main advantage offered by the method consists of analyzing long lines of non-accessible pipes, realizing an automatic evaluation of the dimensions of superficial flaws in pipelines.

Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification

ACCIANI, Giuseppe
2010

Abstract

In this paper an effective procedure that allows evaluating the dimensions of corrosive flaws on non-accessible pipes is presented. The method is based on the propagation of ultrasound waves, analyzing the informative content of echoes reflected by defects. The approach exploits the properties of the wavelet transform to represent signals by a reduced form. The coefficients of this representation are selected properly by making use of a filter method followed by a genetic algorithm and, then, they feed a neural network classifier which evaluates the dimensions of defects on the pipe under test. Numerical results show low error rates in the evaluation of both angular and axial extension of each flaw. The main advantage offered by the method consists of analyzing long lines of non-accessible pipes, realizing an automatic evaluation of the dimensions of superficial flaws in pipelines.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/9383
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact