Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays, in relation to its potential for development in the society worldwide. Most of its applicability have already been investigated, such as: heating and cooling of private and public buildings, roads defrost, cooling of industrial processes, food drying systems, desalination. Some of the main limitations related to the development of low-enthalpy geothermal system are represented by the initial costs, the lack of knowledge that the public has in this topic and the negative effect that a geothermal system could cause during time on environmental factors. The lack of knowledge regarding the heat transfer dynamics of fractured aquifers and porous, leads to oversizing the systems by further increasing the initial costs. In order to optimize the efficiency of the systems that use groundwater as geother-mal resource, the flow and heat transfer in dynamic aquifers need to be well characterized. The low enthalpy geothermal resource, however, is always usable and easily availa-ble. Experiments carried out in this research have been developed mainly in order to be able to analyze the potential and to optimize short-circuited low-enthalpy geothermal systems. This type of system has been designed especially to decrease the environ-mental impact caused by the injection of water at a temperature higher than the ground water temperature. In this way, in fact, it is possible to reduce thermal variations within a same area of interest. The tests conducted in these three years therefore aim to characterize the dynamics of heat transport in porous and fractured aquifers to optimize the efficiency of circuited low enthalpy geothermal systems. Therefore has been built a prototype at the bench scale at environmental geo engineering laboratory of the Polytechnic of Bari. On this prototype several test have been performed to analyse the dynamics of heat transport in a single fracture and in a fracture networks. The heat transport has been compared with the mass transport. During these three years of PhD study, some experiments have been conducted which have enabled the production of some papers, published in international scientific journals. The dynamics of heat transfer have been studied in fractured media and in porous media at different grain sizes. First of all the heat transport in fractured media was studied, and compared this with the mass. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of a Tang’s solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimension-less parameters have permitted to better understand the dynamics of heat transport and the efficiency of heat exchange between the fractures and matrix. The results have been compared with the previous experimental studies on solute transport. Subsequently, some tests in situ have been performed on fractured chalky, at the experimental platform of Polytechnic of La Salle Beauvais. A natural gradient test has been carried out using hot water as a tracer. Subsequently, have been analyzed in the laboratory the dynamics of the heat transport in porous media, so has been cre-ated another prototype at bench-scale. Several tests are conducted in laboratory on prototype, at bench-scale, filled with different grain size materials. The experiments consisted in injecting hot water flow at known temperatures in a porous medium column. The thermal response curves (BTCs) have been obtained. This study has permitted to investigate the critical issues regarding the heat transport in porous media to vary the grain size, and obtain the results regarding the relationship between the flow rate and the heat loss and the heat balance and validity of the non-thermal equilibrium, to describe the behaviour of fluid and solid phase varying the particle size, which allowed, by comparing the data obtained in previous tests with fractured, to obtain important results. From these studies it was found that the specific surface of the medium plays an extremely important role. By varying the specific surface, the geothermal system (aquifer) seems to retain more or less heat. It would seem that aquifer characterized by an high specific surface, at the same flow rate, is better suited to retain heat, therefore a low specific surface system lends itself better to accumulate heat, to store it and to be therefore exploited as a heat accumulator. On the contrary, a system characterized by low specific surface area is more suited to enter heat from a geothermal system, as it tends to dissipate earlier heat respect to a high specific surface system. From this emerges another important factor affecting a fractured system. Furthermore, the theoretical thermal dispersion is much lower than the dispersion observed by laboratory tests. In fact, the thermal dispersion for a fractured system plays a very important role, is very significant as regards the behaviour of the between extruded heat and is not negligible. The channelling effect plays an important role as well as the fracture matrix interaction. In the case of a fractured system, in fact, the channeling effect in the thermal BTCS and in the different parameters analyzed is very clear. The long tail and the anticipated peak depend channelling effect and matrix-fracture interaction. This study show that the specific surface of the medium plays an extremely important role. By varying the specific surface area, the subsurface reservoir formations is able to retain more or less heat due to variation of thermal dispersion. From the present studies, have been found, in fact, that an subsurface reservoir formations characterized by a low specific surface, at the same flow rate, at the same hydraulic and thermal properties, presents high capability to store heat respect to the subsurface reservoir formations characterized by a high specific surface system that has better properties to dissipate heat In fact, if the fractures in the reservoir have a high density and are well connected, such that the matrix blocks are small, the optimal conditions for thermal exchange are not reached as the matrix blocks have a limited capability to store heat. Therefore, subsurface reservoir formations with large porous matrix blocks will be the optimal geological formations to be exploited for ge-othermal power development. In fact, if the fractures in the reservoir have a high density and are well connected, such that the matrix blocks are small, the optimal conditions for thermal exchange are not reached as the matrix blocks have a limited capability to store heat. The estimation of the average effective thermal conductivity coefficient shows that it is not efficient to store thermal energy in rocks with high fracture density because the fractures are surrounded by a matrix with more limited capacity for diffusion giving rise to an increase in solid thermal resistance. On the other hand, isolated permeable fractures will tend to lead to the more distribution of heat throughout the matrix. The study could help to improve the efficiency and optimization of industrial and en-vironmental systems, and may provide a better understanding of geological processes involving transient heat transfer in the subsurface. Future developments of the current study will be carrying out investigations and experiments aimed at further deepening the quantitative understanding of how fracture arrangement and matrix interactions affect the efficiency of storing and dissipation thermal energy in aquifers. This result could be achieved by means of using different formations with different fracture density and matrix porosity. Results from this study are very interesting for further development of existing geo-thermal technologies. It would be interesting to proceed with the study of heat transport to vary the thickness, roughness and other key parameters of fractures and continue to study new geothermal systems that allow, starting from the experi-mental knowledge, to contain greater the environmental impact on water and soil of low enthalpy geothermal systems, and at the same time allow to reduce the costs while achieving an optimization of the system.
L’energia geotermica a bassa entalpia è una risorsa rinnovabile che è ancora poco sviluppata al giorno d'oggi rispetto al suo potenziale sviluppo in Italia e in tutto il Mondo. La maggior parte delle sue possibilità di impiego sono già state studiate, come ad esempio: riscaldamento e il raffreddamento degli edifici privati e pubblici, sbrinamento di strade, raffreddamento di processi industriali, sistemi di essiccamento delle di produzioni agroalimentari, desalinizzazione. Due dei principali limiti legati allo sviluppo del sistema geotermico a bassa entalpia riguardano i costi iniziali, la poca conoscenza che l’opinione pubblica ha su questo argomento e cosa potrebbe provocare nel tempo la variazione termica su acqua e suo-lo dovuta allo sfruttamento di questi sistemi geotermici. Al fine di ottimizzare l'efficienza degli impianti che usano le acque sotterranee come risorsa geotermica, il flusso e la dinamica di trasporto di calore in falde acquifere hanno bisogno di essere ben caratterizzati. La mancata conoscenza riguardo le dinamiche di trasporto di calore di acquiferi fratturati ma anche porosi porta a sovra-dimensionare gli impianti aumentando ulteriormente i costi iniziali. La risorsa geotermica a bassa entalpia, tuttavia, è sempre utilizzabile e facilmente disponibile. Le sperimentazioni effettuate in questo percorso di ricerca sono state sviluppate principalmente nell’ottica di poter analizzare le potenzialità e per ottimizzare sistemi geotermici aperti a bassa entalpia che operano all'interno dello stesso pozzo geotermico, quindi sistemi cortocircuitati. Questo tipo di sistema è stato pensato soprattutto per diminuire l'impatto ambientale dovuto dall'iniezione di acqua a temperatura maggiore rispetto alla temperatura di presa. In questo modo, infatti, è possibile con-tenere le variazioni termiche all'interno di una stessa area di interesse. Nel corso di questi tre anni di dottorato sono stati condotti diversi esperimenti a scala di banco con i quali sono stati prodotti dei lavori pubblicati su riviste scientifiche internazionali. Gli esperimenti si sono divisi in due macro categorie accumunate dall’unico obiettivo di comprendere le dinamiche di trasporto di calore: studio di calore in mezzi fratturati e studio di calore in mezzi porosi a diversa granulometria. Il primo test ha riguardato in particolare lo studio del trasporto di calore in mezzi fratturati. Pertanto si è costruito un prototipo a scala di banco presso il laboratorio di geo-ingegneria ambientale del Politecnico di Bari. Su questo prototipo sono stati eseguiti diversi test in particolare è stato analizzato il comportamento del trasporto di calore prima in singola frattura e successivamente in un network di fratture. Il trasporto di calore è stato così confrontato con il trasporto di massa. Sono state ottenute delle curve di risposta termica (BTCs) che sono state modellate con l' Esplicit Network Model (ENM), che si basa su un adattamento della soluzione di un Tang per il trasporto dei soluti in una singola frattura semi-infinita incorporata in una matrice porosa. La stima del time moment analisys, tailing e altri parametri adimensionali hanno per-messo di comprendere meglio le dinamiche di trasporto di calore e l'efficienza di scambio termico tra le fratture e matrice. I risultati sono stati confrontati con i prece-denti studi sperimentali in materia di trasporto di soluti. Successivamente, sono state eseguite delle prove in sito presso la piattaforma sperimentale dell’università di LaSalle di Beauvais (Francia) con la quale per due anni c’è stato un rapporto di collaborazione con l’obiettivo di studiare il trasporto di calore in mezzi gessosi fratturati. Sono state eseguite delle prove a gradiente naturale utilizzando il calore come tracciante. Successivamente ci si è concentrati sullo studio delle dinamiche del trasporto di calore in mezzi porosi. E' stato creato un altro prototipo per studiare il trasporto di calore in mezzi porosi. Sono stati condotti diversi test sul prototipo a scala di banco riempito con materiale avente diversa granulometria. Gli esperimenti consistevano nell'iniettare portate d'acqua calda a temperatura nota in corrispondenza di termocoppie posizionate lungo una colonna mezzo poroso. Sono state così ottenute delle curve di risposta termica (BTCs). Questo studio ha permesso di studiare le criticità riguardanti il trasporto del calore in mezzi porosi al variare della granulometria, ed ottenere dei risultati in merito al rapporto tra la velocità di flusso e la dispersione termica e la validità dell’equilibrio termico e del non equilibrio termico per descrivere il comportamento tra fase fluida e solida al variare della granulometria, che hanno permesso, confrontando i dati ottenuti nei test precedenti con il fratturato di ottenere dei risultati importanti. Dal confronto di questi studi, è emerso che la superficie specifica del mezzo gioca un ruolo estremamente importante nelle dinamiche di trasporto di calore. Al variare della superficie specifica, il sistema geo-termico (acquifero) riesce a trattenere più o meno calore. In particolare, gli studi effettuati, dimostrano che un acquifero caratterizzato da un mezzo con alta superficie specifica, a parità di portata, si presta meglio a trattenere calore, pertanto un sistema a bassa superficie specifica si presta meglio ad accumulare calore, ad immagazzinarlo e ad essere quindi sfruttato come accumulatore di calore. Al contrario, un sistema caratterizzato da bassa superficie specifica è maggiormente indicato per immettere calore proveniente da un sistema geotermico, in quanto tende a cedere molto prima il calore rispetto ad un sistema ad elevata superficie specifica. Da questo emerge un altro fattore importante che riguarda un sistema fratturato. Il valore della dispersione termica teorica risulta molto inferiore rispetto al valore della dispersione osservata dai test di laboratorio. Infatti la dispersione termica per un sistema fratturato gioca un ruolo molto importante, è molto significativa per l’analisi delle dinamiche del trasporto di calore e non è trascurabile. E’ emerso inoltre che anche l’effetto channeling gioca un ruolo importante così come l'interazione frattura matrice. Nel caso di un sistema fratturato, infatti, l'effetto channeling nelle curve di risposta termica (BTCs) e nei diversi parametri analizzati è molto evidente. La lunga coda e il picco anticipato di-pendono dell'effetto channeling e dall’ interazione matrice-frattura. Dall’analisi di questi studi emerge che la superficie specifica del mezzo gioca un ruolo estremamente importante. Infatti variando la superficie specifica, le formazioni caratteristiche di un acquifero tenderebbero ad immagazzinare più o meno calore. Mezzi con bassa superficie specifica del mezzo, a parità di portata, proprietà idrauliche e termiche, presentano elevata capacità di immagazzinare calore rispetto a formazioni caratterizzate da un’alta superficie specifica che presentano migliori proprietà di dissipare calore. Se le fratture hanno un'alta densità e sono ben collegate, tale che i blocchi matriciali sono piccoli, la condizione ottimali per lo scambio termico non è raggiunta in quanto i blocchi della matrice hanno una limitata capacità di accumulare calore. Pertanto, sembrerebbe che le formazioni con matrice porosa a grandi blocchi siano le formazioni geologiche ottimali da sfruttare per lo sviluppo di energia geotermica. La stima della effettiva coefficiente di conducibilità termica media dimostra che le rocce con alta densità di fratturazione non si prestano ad immagazzinare l'energia termica, poiché le fratture sono circondate da una matrice con più limitate capacità di diffusione dando luogo ad un aumento della resistenza termica. Lo studio potrebbe contribuire a migliorare l'efficienza e l’ottimizzazione dei sistemi industriali e ambientali, e può permettere una migliore comprensione dei processi geologici che comportano un trasferimento di calore nel sottosuolo. Gli sviluppi futuri di questo studio si baseranno su ulteriori indagini ed esperimenti volti ad comprendere quantitativamente come l’interazione frattura-matrice può influenzare l'efficienza di uno stoccaggio e i fenomeni di dissipazione di energia termica nelle falde acquifere. Questo risultato potrebbe essere ottenuto attraverso esperimenti di laboratorio che utilizzino formazioni differenti con diversa densità di frattura e porosità della matrice. Sarebbe interessante procedere con lo studio del trasporto di calore al variare dello spessore, rugosità e altri parametri chiave delle fratture e proseguire con studiare nuovi sistemi geotermici che permettano di contenere l'impatto ambientale sull'acqua e sul suolo di sistemi geotermici a bassa entalpia, e allo stesso tempo di diminuire i costi ottenendo un'ottimizzazione del sistema.
Analysis of heat transport dynamics in fractured and porous media for the development of low enthalpy geothermal systems / Allegretti, Nicoletta Maria. - (2017). [10.60576/poliba/iris/allegretti-nicoletta-maria_phd2017]
Analysis of heat transport dynamics in fractured and porous media for the development of low enthalpy geothermal systems
ALLEGRETTI, Nicoletta Maria
2017-01-01
Abstract
Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays, in relation to its potential for development in the society worldwide. Most of its applicability have already been investigated, such as: heating and cooling of private and public buildings, roads defrost, cooling of industrial processes, food drying systems, desalination. Some of the main limitations related to the development of low-enthalpy geothermal system are represented by the initial costs, the lack of knowledge that the public has in this topic and the negative effect that a geothermal system could cause during time on environmental factors. The lack of knowledge regarding the heat transfer dynamics of fractured aquifers and porous, leads to oversizing the systems by further increasing the initial costs. In order to optimize the efficiency of the systems that use groundwater as geother-mal resource, the flow and heat transfer in dynamic aquifers need to be well characterized. The low enthalpy geothermal resource, however, is always usable and easily availa-ble. Experiments carried out in this research have been developed mainly in order to be able to analyze the potential and to optimize short-circuited low-enthalpy geothermal systems. This type of system has been designed especially to decrease the environ-mental impact caused by the injection of water at a temperature higher than the ground water temperature. In this way, in fact, it is possible to reduce thermal variations within a same area of interest. The tests conducted in these three years therefore aim to characterize the dynamics of heat transport in porous and fractured aquifers to optimize the efficiency of circuited low enthalpy geothermal systems. Therefore has been built a prototype at the bench scale at environmental geo engineering laboratory of the Polytechnic of Bari. On this prototype several test have been performed to analyse the dynamics of heat transport in a single fracture and in a fracture networks. The heat transport has been compared with the mass transport. During these three years of PhD study, some experiments have been conducted which have enabled the production of some papers, published in international scientific journals. The dynamics of heat transfer have been studied in fractured media and in porous media at different grain sizes. First of all the heat transport in fractured media was studied, and compared this with the mass. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of a Tang’s solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimension-less parameters have permitted to better understand the dynamics of heat transport and the efficiency of heat exchange between the fractures and matrix. The results have been compared with the previous experimental studies on solute transport. Subsequently, some tests in situ have been performed on fractured chalky, at the experimental platform of Polytechnic of La Salle Beauvais. A natural gradient test has been carried out using hot water as a tracer. Subsequently, have been analyzed in the laboratory the dynamics of the heat transport in porous media, so has been cre-ated another prototype at bench-scale. Several tests are conducted in laboratory on prototype, at bench-scale, filled with different grain size materials. The experiments consisted in injecting hot water flow at known temperatures in a porous medium column. The thermal response curves (BTCs) have been obtained. This study has permitted to investigate the critical issues regarding the heat transport in porous media to vary the grain size, and obtain the results regarding the relationship between the flow rate and the heat loss and the heat balance and validity of the non-thermal equilibrium, to describe the behaviour of fluid and solid phase varying the particle size, which allowed, by comparing the data obtained in previous tests with fractured, to obtain important results. From these studies it was found that the specific surface of the medium plays an extremely important role. By varying the specific surface, the geothermal system (aquifer) seems to retain more or less heat. It would seem that aquifer characterized by an high specific surface, at the same flow rate, is better suited to retain heat, therefore a low specific surface system lends itself better to accumulate heat, to store it and to be therefore exploited as a heat accumulator. On the contrary, a system characterized by low specific surface area is more suited to enter heat from a geothermal system, as it tends to dissipate earlier heat respect to a high specific surface system. From this emerges another important factor affecting a fractured system. Furthermore, the theoretical thermal dispersion is much lower than the dispersion observed by laboratory tests. In fact, the thermal dispersion for a fractured system plays a very important role, is very significant as regards the behaviour of the between extruded heat and is not negligible. The channelling effect plays an important role as well as the fracture matrix interaction. In the case of a fractured system, in fact, the channeling effect in the thermal BTCS and in the different parameters analyzed is very clear. The long tail and the anticipated peak depend channelling effect and matrix-fracture interaction. This study show that the specific surface of the medium plays an extremely important role. By varying the specific surface area, the subsurface reservoir formations is able to retain more or less heat due to variation of thermal dispersion. From the present studies, have been found, in fact, that an subsurface reservoir formations characterized by a low specific surface, at the same flow rate, at the same hydraulic and thermal properties, presents high capability to store heat respect to the subsurface reservoir formations characterized by a high specific surface system that has better properties to dissipate heat In fact, if the fractures in the reservoir have a high density and are well connected, such that the matrix blocks are small, the optimal conditions for thermal exchange are not reached as the matrix blocks have a limited capability to store heat. Therefore, subsurface reservoir formations with large porous matrix blocks will be the optimal geological formations to be exploited for ge-othermal power development. In fact, if the fractures in the reservoir have a high density and are well connected, such that the matrix blocks are small, the optimal conditions for thermal exchange are not reached as the matrix blocks have a limited capability to store heat. The estimation of the average effective thermal conductivity coefficient shows that it is not efficient to store thermal energy in rocks with high fracture density because the fractures are surrounded by a matrix with more limited capacity for diffusion giving rise to an increase in solid thermal resistance. On the other hand, isolated permeable fractures will tend to lead to the more distribution of heat throughout the matrix. The study could help to improve the efficiency and optimization of industrial and en-vironmental systems, and may provide a better understanding of geological processes involving transient heat transfer in the subsurface. Future developments of the current study will be carrying out investigations and experiments aimed at further deepening the quantitative understanding of how fracture arrangement and matrix interactions affect the efficiency of storing and dissipation thermal energy in aquifers. This result could be achieved by means of using different formations with different fracture density and matrix porosity. Results from this study are very interesting for further development of existing geo-thermal technologies. It would be interesting to proceed with the study of heat transport to vary the thickness, roughness and other key parameters of fractures and continue to study new geothermal systems that allow, starting from the experi-mental knowledge, to contain greater the environmental impact on water and soil of low enthalpy geothermal systems, and at the same time allow to reduce the costs while achieving an optimization of the system.File | Dimensione | Formato | |
---|---|---|---|
29 ciclo-ALLEGRETTI Nicoletta Maria.pdf
accesso aperto
Descrizione: “Analysis of heat transport dynamics in fractured and porous media for the development of low enthalpy geothermal systems”
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
11.13 MB
Formato
Adobe PDF
|
11.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.