We study learning vector quantization methods to adapt the size of (hyper-)spherical clusters to better fit a given data set, especially in the context of non-normalized activations. The basic idea of our approach is to compute a desired radius from the data points that are assigned to a cluster and then to adapt the current radius of the cluster in the direction of this desired radius. Since cluster size adaptation has a considerable impact on the number of clusters needed to cover a data set, we also examine how to select the number of clusters based on validity measures and, in the context of non-normalized activations, on the coverage of the data.

Learning Vector Quantization: Cluster Size and Cluster Number

G. Acciani
2004

Abstract

We study learning vector quantization methods to adapt the size of (hyper-)spherical clusters to better fit a given data set, especially in the context of non-normalized activations. The basic idea of our approach is to compute a desired radius from the data points that are assigned to a cluster and then to adapt the current radius of the cluster in the direction of this desired radius. Since cluster size adaptation has a considerable impact on the number of clusters needed to cover a data set, we also examine how to select the number of clusters based on validity measures and, in the context of non-normalized activations, on the coverage of the data.
IEEE International Symposium on Circuits and Systems, ISCAS 2004
0-7803-8251-X
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/14477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact