Climate change is one of the biggest challenges that humanity will face in the upcoming decades. Hence, over the last few years, the environmental engineering research community has focused its effort on the development and deployment of (often distributed) smart sensor systems, specifically designed for environmental monitoring. These sensors produce large amounts of data, which can be used to describe climate changes and, hopefully, suggest future actions to prevent further damages to the environment. However, to enable the ’smart’ capabilities in such systems, researchers must pay attention to several aspects, including two on which this thesis work is focused. The first one, which is often underestimated, is the design of the data acquisition phase: a poor experimental setting will lead to biased data, and therefore ineffective results. The second one concerns the algorithm used to model data, which should be chosen to reflect their intrinsic nature. This work tries to give a first contribution to both these aspect, describing the results of two specific use case scenarios, and highlighting how experiments can greatly benefit from some simple, yet effective, design guidelines. The final goal is to define an initial working pipeline for environmental data processing, which can be both flexible to be adapted to different scenarios, and accurate enough to give an effective description of the observed phenomena.
Quella del cambiamento climatico è una delle più grandi sfide che l'umanità dovrà affrontare nei prossimi decenni. Per questo, negli ultimi anni, gli sforzi della ricerca si sono focalizzati sullo sviluppo ed implementazione di sistemi distribuiti di monitoraggio ambientale. Questi sistemi sono in grado di produrre grandi quantità di dati, che possono essere usati per descrivere i cambiamenti climatici e, sperabilmente, indirizzare le future decisioni politiche allo scopo di mitigarne gli effetti. Ad ogni modo, per rendere questi sistemi effettivamente intelligenti, è necessario tenere in considerazione diversi aspetti, inclusi i due su cui si è focalizzato questo lavoro di tesi. Il primo, spesso sottovalutato, riguarda la progettazione dell'esperimento di acquisizione dei dati: infatti, un setting sperimentale poco consono porta a dati in qualche modo affetti da un bias, e, di conseguenza, a risultati non significativi. Il secondo aspetto invece riguarda l'algoritmo usato per modellare i dati, che dovrebbe essere scelto per riflettere la natura degli stessi. Questo lavoro prova quindi a dare un (primo) contributo ad entrambi questi aspetti, descrivendo i risultati di due specifici scenari di utilizzo, e mostrando come gli esperimenti possano beneficiare da alcune semplici linee guida. L'obiettivo finale a cui tende questo lavoro è quindi quello di definire una pipeline di elaborazione dei dati ambientali, che possa, a lungo andare, diventare abbastanza flessibile da essere adattata a scenari eterogenei e relativi ad una varietà di fenomeni ambientali.
Smart sensor systems for environmental monitoring: implications and applications / Cardellicchio, Angelo. - ELETTRONICO. - (2019). [10.60576/poliba/iris/cardellicchio-angelo_phd2019]
Smart sensor systems for environmental monitoring: implications and applications
Cardellicchio, Angelo
2019-01-01
Abstract
Climate change is one of the biggest challenges that humanity will face in the upcoming decades. Hence, over the last few years, the environmental engineering research community has focused its effort on the development and deployment of (often distributed) smart sensor systems, specifically designed for environmental monitoring. These sensors produce large amounts of data, which can be used to describe climate changes and, hopefully, suggest future actions to prevent further damages to the environment. However, to enable the ’smart’ capabilities in such systems, researchers must pay attention to several aspects, including two on which this thesis work is focused. The first one, which is often underestimated, is the design of the data acquisition phase: a poor experimental setting will lead to biased data, and therefore ineffective results. The second one concerns the algorithm used to model data, which should be chosen to reflect their intrinsic nature. This work tries to give a first contribution to both these aspect, describing the results of two specific use case scenarios, and highlighting how experiments can greatly benefit from some simple, yet effective, design guidelines. The final goal is to define an initial working pipeline for environmental data processing, which can be both flexible to be adapted to different scenarios, and accurate enough to give an effective description of the observed phenomena.File | Dimensione | Formato | |
---|---|---|---|
31 ciclo-CARDELLICCHIO Angelo.pdf
accesso aperto
Descrizione: Tesi di Dottorato Cardellicchio Angelo
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
46.17 MB
Formato
Adobe PDF
|
46.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.