The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.

On unified crack propagation laws / Papangelo, A.; Guarino, R.; Pugno, N.; Ciavarella, M.. - In: ENGINEERING FRACTURE MECHANICS. - ISSN 0013-7944. - STAMPA. - 207:(2019), pp. 269-276. [10.1016/j.engfracmech.2018.12.023]

On unified crack propagation laws

Papangelo A.;Ciavarella M.
2019-01-01

Abstract

The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.
2019
On unified crack propagation laws / Papangelo, A.; Guarino, R.; Pugno, N.; Ciavarella, M.. - In: ENGINEERING FRACTURE MECHANICS. - ISSN 0013-7944. - STAMPA. - 207:(2019), pp. 269-276. [10.1016/j.engfracmech.2018.12.023]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/175769
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact