Optomechanics is a developing field of research exploring the interaction between light and mechanical motion. The modern nanofabrication techniques for mechanical devices and ultralow dissipation optical structures have provided a way for giving an important experimental progress to optomechanics, both for applications and for fundamental investigations. In this thesis optomechanics will be investigated in different aspects, in its general meaning, both theoretically and experimentally. There are different ways in which light and mechanics interact with each other. In this thesis three different macro areas of optomechanics have been developed: optical gyroscopes, optomechanical forces and photoacoustic spectroscopy. The interaction between light and mechanical motion has been investigated starting from the concept of optical gyroscopes. Optical gyroscopes are sensors of angular velocity. In the present state of the art, the physical principles and the configurations used for realizing optical gyroscopes are not suitable for miniaturizing them to the microscale. In this thesis some new configurations exploiting the concept of "exceptional points" have been presented and investigated. According to the relativistic effect called Sagnac effect, the resonance frequencies of two counterpropagating modes in a ring resonator are separated by a quantity proportional to the angular velocity of the frame. However, the possibility of miniaturizing the optical gyroscope is limited by the fact that the resonance splitting is proportional to the radius of the ring resonator. In the first chapter the concept of parity-time symmetry has been introduced as a solution for the integration of angular velocity sensors. By setting up two coupled optical resonators designed to be at the so called "exceptional point", it could be demonstrated that the eigenfrequency splitting is proportional to the angular velocity of the device, with a sensitivity that is several orders of magnitude higher than the classical Sagnac gyroscope. In this thesis it has been demonstrated that one problem of the parity-time symmetric gyroscope is the instability of the optical eigenmodes when the system is in rotation. That is why the idea of the anti-parity-time-symmetric gyroscope was proposed, using a U-shaped auxiliary waveguide to indirectly couple two optical resonators. The proposed solution has been shown to be an interesting alternative for angular velocity sensing, thanks to the easy readout scheme and the absence of modes instability. A simple broadband source, together with a photodetector could be used to read the output of the sensor. Finally, a new configuration for an anti-parity-time-symmetric gyroscope has been proposed. It is different from the U-shaped configuration and uses only an auxiliary straight waveguide to indirectly couple two optical resonators. This architecture has been shown to be much more robust, insensitive to some fabrication errors, with respect to the U-shaped one. The second area of optomechanics that has been investigated in this thesis includes optomechanical forces. In particular, a generalized model able to calculate the mechanical displacement of only one degree of freedom of a general optomechanical setup has been developed. The model initially proposed by Rakich has been extended to systems where gain or loss are considered. Then, the model has been used to evaluate the effect of optical forces in parity-time symmetric system with suspended waveguides in the coupling region. It has been demonstrated that it is possible to enhance the optical forces thanks to condition of parity-time symmetry. Secondly, an analytical modelling of the dynamics of optomechanically coupled suspended optical waveguides has been proposed, including a modelling of the damping, with the squeezing effect. Such an analytical model, together with the numerical proposed algorithm can be used to find the evolution of the system in the time domain of complex optomechanical structures, such as optomechanical switches. Also, an experimental work on an optomechanical switch has been shown. All the fabrication steps to fabricate the integrated optomechanical device has been explained. The most critical part during the fabrication has been the underetching of suspended waveguides. In fact, using a wet HF etching process caused the suspended waveguides to get stuck. Using a ZEP mask and a vapor HF etching, unexpected HF bubbles appeared on the surface. So, a hard mask has been used to guarantee the successful underetching of the device. Finally, the experimental measurement on the chip showed the expected behaviour of the device. Finally, Photoacoustic Spectroscopy has been analysed. The state-of-art Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) sensor has been modelled and simulated and a new semi-integrated sensor has been proposed. One problem of the state-of-art QEPAS sensors is the necessity of alignment for optical components. Moreover, the dimension of all the devices involved in the setup makes it difficult to realize portable and compact sensors. The idea proposed in this thesis is to integrate all the optical components needed to guide the light in the proximity of the Quartz Tuning Fork to drastically reduce the dimension of the overall setup and to avoid the problem of optical alignment. The possibility of using integrated optical waveguides to guide light makes it possible to use optical resonators to enhance the photoacoustic signal that is read through a Quartz Tuning Fork. The proposed setup is meant to use an integrated laser bonded to a Silicon chip, where all the waveguides are realized. In this case a very small mechanical resonator can be bonded over the Silicon chip, in order to enhance the amplitude of the pressure signal. In such a way, performance comparable with the state-of-art QEPAS sensor can been achieved. Such a result could pave the way to a new generation of compact QEPAS sensor, that could overcome the problem of the size of the setups and of the alignment of optical components.
L'optomeccanica è un campo di ricerca in via di sviluppo che esplora l'interazione tra la luce e la meccanica. Le moderne tecniche di nanofabbricazione per dispositivi meccanici e strutture ottiche a bassissima dissipazione hanno dato permesso un importante progresso sperimentale all'optomeccanica, sia per applicazioni che per la ricerca fondamentale. Ci sono diversi modi in cui luce e meccanica interagiscono tra loro. In questa tesi sono state sviluppate tre diverse macroaree dell'optomeccanica: giroscopi ottici, forze optomeccaniche e spettroscopia fotoacustica. L'interazione tra luce e movimento meccanico è stata studiata a partire dal concetto di giroscopi ottici. I giroscopi ottici sono sensori di velocità angolare. Allo stato dell’arte, i principi fisici e le configurazioni utilizzate per la realizzazione di giroscopi ottici non sono adatti per miniaturizzarli alla microscala. In questa tesi sono state presentate e indagate alcune nuove configurazioni che sfruttano il concetto di "punti eccezionali". Secondo l'effetto relativistico chiamato effetto Sagnac, le frequenze di risonanza di due modi contropropaganti in un risonatore ad anello sono separate da una quantità proporzionale alla velocità angolare del “frame”. Tuttavia, la possibilità di miniaturizzare il giroscopio ottico è limitata dal fatto che la sperazione tra le risonanze è proporzionale al raggio del risonatore ad anello. Nel primo capitolo è stato introdotto il concetto di simmetria “parity-time” (PT) come soluzione per l'integrazione di sensori di velocità angolare. Predisponendo due risonatori ottici accoppiati progettati per essere al cosiddetto "punto eccezionale", si è potuto dimostrare che la separazione tra le autofrequenze è proporzionale alla velocità angolare del dispositivo, con una sensibilità che è di diversi ordini di grandezza superiore a quella classica Giroscopio Sagnac. In questa tesi è stato dimostrato che un problema del giroscopio a simmetria PT è l'instabilità dei modi ottici quando il sistema è in rotazione. Ecco perché è stata proposta l'idea del giroscopio a simmetria anti-PT, utilizzando una guida d'onda ausiliaria a forma di U per accoppiare indirettamente due risonatori ottici. La soluzione proposta si è dimostrata un'alternativa interessante per il rilevamento della velocità angolare, grazie allo schema di facile lettura e all'assenza di modi instabili. Una semplice sorgente a banda larga e un fotorilevatore sarebbero sufficienti per leggere l'uscita del sensore. Infine, è stata proposta una nuova configurazione per un giroscopio a simmetria anti-PT. È diverso dalla configurazione a forma di U e utilizza solo una guida d'onda diritta ausiliaria per accoppiare indirettamente due risonatori ottici. Questa architettura si è dimostrata molto più robusta, insensibile ad alcuni errori di fabbricazione, rispetto a quella ad U. La seconda area dell'optomeccanica che è stata studiata in questa tesi include le forze optomeccaniche. In particolare, è stato sviluppato un modello generalizzato in grado di calcolare lo spostamento meccanico di un solo grado di libertà di un setup optomeccanico generale. Il modello inizialmente proposto da Rakich è stato esteso a sistemi in cui si considerano guadagni o perdite. Quindi, il modello è stato utilizzato per valutare l'effetto delle forze ottiche in un sistema a simmetria PT con guide d'onda sospese nella regione di accoppiamento. È stato dimostrato che è possibile incrementare le forze ottiche grazie alla condizione di simmetria PT. In secondo luogo, è stata proposta una modellazione analitica della dinamica meccanica di guide d'onda ottiche sospese accoppiate soggette a forze optomeccaniche, inclusa una modellazione dello smorzamento, con effetto squeezing. Tale modello analitico, insieme all'algoritmo numerico proposto, può essere utilizzato per trovare l'evoluzione del sistema nel dominio del tempo di complesse strutture optomeccaniche, come gli interruttori optomeccanici. Inoltre, è stato mostrato un lavoro sperimentale su un interruttore optomeccanico. Sono state spiegate tutte le fasi di fabbricazione per realizzare il dispositivo optomeccanico integrato. Infine, è stata analizzata la spettroscopia fotoacustica. Il sensore allo stato dell'arte della spettroscopia fotoacustica al quarzo (QEPAS) è stato modellato e simulato ed è stato proposto un nuovo sensore semi-integrato. Un problema dei sensori QEPAS attuali è la necessità di allineamento per i componenti ottici. Inoltre, la dimensione di tutti i dispositivi coinvolti nel setup rende difficile realizzare sensori portatili e compatti. L'idea proposta in questa tesi è quella di integrare tutti i componenti ottici necessari a guidare la luce in prossimità del diapason al quarzo per ridurre drasticamente le dimensioni del setup complessivo ed evitare il problema dell'allineamento ottico. La possibilità di utilizzare guide d'onda ottiche integrate per guidare la luce rende possibile utilizzare risonatori ottici per migliorare il segnale fotoacustico che viene letto attraverso il diapason al quarzo. La configurazione proposta è pensata per utilizzare un laser integrato legato a un chip di silicio, dove vengono realizzate tutte le guide d'onda. In questo caso un risuonatore meccanico molto piccolo può essere collegato al chip di silicio, al fine di aumentare l'ampiezza del segnale di pressione. In tal modo, è possibile ottenere prestazioni paragonabili al sensore QEPAS all'avanguardia. Un risultato del genere potrebbe aprire la strada a una nuova generazione di sensori QEPAS compatti, in grado di superare il problema delle dimensioni dei setup e dell'allineamento dei componenti ottici.
Integrated optomechanical devices for sensing / De Carlo, Martino. - ELETTRONICO. - (2021). [10.60576/poliba/iris/de-carlo-martino_phd2021]
Integrated optomechanical devices for sensing
De Carlo, Martino
2021-01-01
Abstract
Optomechanics is a developing field of research exploring the interaction between light and mechanical motion. The modern nanofabrication techniques for mechanical devices and ultralow dissipation optical structures have provided a way for giving an important experimental progress to optomechanics, both for applications and for fundamental investigations. In this thesis optomechanics will be investigated in different aspects, in its general meaning, both theoretically and experimentally. There are different ways in which light and mechanics interact with each other. In this thesis three different macro areas of optomechanics have been developed: optical gyroscopes, optomechanical forces and photoacoustic spectroscopy. The interaction between light and mechanical motion has been investigated starting from the concept of optical gyroscopes. Optical gyroscopes are sensors of angular velocity. In the present state of the art, the physical principles and the configurations used for realizing optical gyroscopes are not suitable for miniaturizing them to the microscale. In this thesis some new configurations exploiting the concept of "exceptional points" have been presented and investigated. According to the relativistic effect called Sagnac effect, the resonance frequencies of two counterpropagating modes in a ring resonator are separated by a quantity proportional to the angular velocity of the frame. However, the possibility of miniaturizing the optical gyroscope is limited by the fact that the resonance splitting is proportional to the radius of the ring resonator. In the first chapter the concept of parity-time symmetry has been introduced as a solution for the integration of angular velocity sensors. By setting up two coupled optical resonators designed to be at the so called "exceptional point", it could be demonstrated that the eigenfrequency splitting is proportional to the angular velocity of the device, with a sensitivity that is several orders of magnitude higher than the classical Sagnac gyroscope. In this thesis it has been demonstrated that one problem of the parity-time symmetric gyroscope is the instability of the optical eigenmodes when the system is in rotation. That is why the idea of the anti-parity-time-symmetric gyroscope was proposed, using a U-shaped auxiliary waveguide to indirectly couple two optical resonators. The proposed solution has been shown to be an interesting alternative for angular velocity sensing, thanks to the easy readout scheme and the absence of modes instability. A simple broadband source, together with a photodetector could be used to read the output of the sensor. Finally, a new configuration for an anti-parity-time-symmetric gyroscope has been proposed. It is different from the U-shaped configuration and uses only an auxiliary straight waveguide to indirectly couple two optical resonators. This architecture has been shown to be much more robust, insensitive to some fabrication errors, with respect to the U-shaped one. The second area of optomechanics that has been investigated in this thesis includes optomechanical forces. In particular, a generalized model able to calculate the mechanical displacement of only one degree of freedom of a general optomechanical setup has been developed. The model initially proposed by Rakich has been extended to systems where gain or loss are considered. Then, the model has been used to evaluate the effect of optical forces in parity-time symmetric system with suspended waveguides in the coupling region. It has been demonstrated that it is possible to enhance the optical forces thanks to condition of parity-time symmetry. Secondly, an analytical modelling of the dynamics of optomechanically coupled suspended optical waveguides has been proposed, including a modelling of the damping, with the squeezing effect. Such an analytical model, together with the numerical proposed algorithm can be used to find the evolution of the system in the time domain of complex optomechanical structures, such as optomechanical switches. Also, an experimental work on an optomechanical switch has been shown. All the fabrication steps to fabricate the integrated optomechanical device has been explained. The most critical part during the fabrication has been the underetching of suspended waveguides. In fact, using a wet HF etching process caused the suspended waveguides to get stuck. Using a ZEP mask and a vapor HF etching, unexpected HF bubbles appeared on the surface. So, a hard mask has been used to guarantee the successful underetching of the device. Finally, the experimental measurement on the chip showed the expected behaviour of the device. Finally, Photoacoustic Spectroscopy has been analysed. The state-of-art Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) sensor has been modelled and simulated and a new semi-integrated sensor has been proposed. One problem of the state-of-art QEPAS sensors is the necessity of alignment for optical components. Moreover, the dimension of all the devices involved in the setup makes it difficult to realize portable and compact sensors. The idea proposed in this thesis is to integrate all the optical components needed to guide the light in the proximity of the Quartz Tuning Fork to drastically reduce the dimension of the overall setup and to avoid the problem of optical alignment. The possibility of using integrated optical waveguides to guide light makes it possible to use optical resonators to enhance the photoacoustic signal that is read through a Quartz Tuning Fork. The proposed setup is meant to use an integrated laser bonded to a Silicon chip, where all the waveguides are realized. In this case a very small mechanical resonator can be bonded over the Silicon chip, in order to enhance the amplitude of the pressure signal. In such a way, performance comparable with the state-of-art QEPAS sensor can been achieved. Such a result could pave the way to a new generation of compact QEPAS sensor, that could overcome the problem of the size of the setups and of the alignment of optical components.File | Dimensione | Formato | |
---|---|---|---|
33 ciclo - DE CARLO Martino.pdf
accesso aperto
Descrizione: Tesi di dottorato completa di frontespizio
Tipologia:
Tesi di dottorato
Licenza:
Tutti i diritti riservati
Dimensione
34.27 MB
Formato
Adobe PDF
|
34.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.