An immense body of research has focused on path-planning and following of wheeled robots in unstructured surfaces. Nonholonomic robots traveling over deformable terrains together with complex operating conditions, however, pose further challenges in terms of a higher demand for robustness and optimality. In this paper, a Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm is employed for planning an optimal path of a wheeled robot, so as to ensure shortest path from the starting point to the target location together with safety through guaranteed avoidance of collisions with static and dynamic obstacles. The fundamental terramechanics concepts are employed to derive essential forces and moments acting on the wheeled robot. Subsequently, a kineto-dynamic model of the robot is developed for designing a novel robust control algorithm based on an exponential-integral-sliding mode (EISMC) scheme and a RBF-NN approximator. The results revealed that the proposed algorithm is responsive and robust to withstand adverse effects of structured and unstructured uncertainties by using the designed adaptation law according to the Lyapunov stability theorem. The effectiveness of the proposed algorithm is also validated against several reported frameworks.

A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains / Taghavifar, Hamid; Rakheja, Subhash; Reina, Giulio. - In: JOURNAL OF TERRAMECHANICS. - ISSN 0022-4898. - STAMPA. - 96:(2021), pp. 147-157. [10.1016/j.jterra.2020.12.001]

A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains

Giulio Reina
2021-01-01

Abstract

An immense body of research has focused on path-planning and following of wheeled robots in unstructured surfaces. Nonholonomic robots traveling over deformable terrains together with complex operating conditions, however, pose further challenges in terms of a higher demand for robustness and optimality. In this paper, a Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm is employed for planning an optimal path of a wheeled robot, so as to ensure shortest path from the starting point to the target location together with safety through guaranteed avoidance of collisions with static and dynamic obstacles. The fundamental terramechanics concepts are employed to derive essential forces and moments acting on the wheeled robot. Subsequently, a kineto-dynamic model of the robot is developed for designing a novel robust control algorithm based on an exponential-integral-sliding mode (EISMC) scheme and a RBF-NN approximator. The results revealed that the proposed algorithm is responsive and robust to withstand adverse effects of structured and unstructured uncertainties by using the designed adaptation law according to the Lyapunov stability theorem. The effectiveness of the proposed algorithm is also validated against several reported frameworks.
2021
A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains / Taghavifar, Hamid; Rakheja, Subhash; Reina, Giulio. - In: JOURNAL OF TERRAMECHANICS. - ISSN 0022-4898. - STAMPA. - 96:(2021), pp. 147-157. [10.1016/j.jterra.2020.12.001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/214926
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact