In this dissertation, novel contributions in the field of Operational Modal analysis are presented in two principal branches. The former focuses on a vibro-acoustical OMA formulations as a simple and effective methodology for microsystems dynamic characterization. The particular output-only modal analysis methodology, that includes acoustical excitation via speakers and response measurements through a laser interferometer and microphone, is illustrated through the in-plane and out-of-plane flexural mode identification by experiment on high-quality factor quartz tuning fork (QTF). Additionally, a generalized OMA framework is proposed with the aim to overcome the main drawback of OMA approach consisting in the NExT assumption of uncorrelated white noises excitations. These hypotheses, in fact, are violated in all those cases in which the exerted environmental loads exhibit coloration, harmonic content or some kind of correlation, as in the cases of mechanical engineering systems like vehicles or wind turbines. Specifically, the proposed OMA technique requires some knowledge about the inputs acting on the system and, thus, it is applicable to systems for which something about the inputs is somehow known. The generalized modal structures of the output cross-correlation functions and power spectral densities are derived, as models showing the dependence not only by the modal parameters, but also by the input spectral characteristics, and employed in a customized identification technique. The second research offshoot is dedicated to a specific class of transmissibility functions, here called Response-based Frequency-Response-Functions (R-FRFs), and it comprises a first investigation on the estimation process of R-FRFs followed by a derivation of the relevant modal model, suitable for being tackled through frequency-domain estimators from the field of experimental and operational modal analysis, which let these additional modal parameters to be identified. It is demonstrated how modes retrieved from R-FRFs are related to the system under investigation, but, virtually, with a different set of boundary conditions. The particular properties give this additional modal parameters the advantage of being local, in turn confirming the significance of response-based frequency response functions in the field of damage detection. Both the research lines are corroborated by numerical and real-world experimental case studies that offer a number of application scenarios for results discussion.
Il presente programma di ricerca individuale si compone di contribuiti innovativi nel campo dell’Analisi Modale Operazionale (abbreviata in OMA) sviluppati in due branche fondamentali. La prima è dedicata alla formulazione della cosiddetta OMA vibro-acustica, quale metodologia semplice ed efficace per la caratterizzazione dinamica di microsistemi. Questa specifica metodologia di analisi modale output-only (la quale impiega un’eccitazione acustica, generata da altoparlanti, e sfrutta l’interferometria laser per la misura delle risposte) viene illustrata attraverso un esempio sperimentale relativo all’identificazione dei modi flessionali in-plane ed out-of-plane di un diapason in quarzo. In aggiunta, viene proposto lo sviluppo di una formulazione OMA detta “generalizzata”: essa mira a superare i principali svantaggi dell’OMA legati all’ipotesi di eccitazione ambientale che descrive le forze esterne quali rumori bianchi non correlati. Tale ipotesi viene difatti violata in tutti quei casi in cui i carichi operazionali sono caratterizzati da colorazione, componenti armoniche o qualsivoglia genere di correlazione (ne fanno esempio sistemi tipici dell’ingegneria meccanica quali veicoli o turbine eoliche). Nello specifico, la tecnica OMA proposta richiede una certa descrizione dei carichi agenti del sistema, risultando così applicabile a tutti quei sistemi per i quali certe caratteristiche degli ingressi sono note a priori. Si deriva, così, una decomposizione modale generalizzata delle funzioni di correlazione e delle densità spettrali di potenza relativamente alle sole risposte strutturali: tali modelli evidenziano una dipendenza non solo dai parametri modali ma anche da alcune caratteristiche spettrali degli ingressi e vengono quindi impiegati nello sviluppo di tecniche ad hoc per l’identificazione. La seconda branca di ricerca è dedicata ad una specifica classe di trasmissibilità, qui denominata come response-based frequency response functions (in breve R-FRFs). Essa approfondisce il processo di misura delle stesse R-FRFs per poi passare alla derivazione del relativo modello modale, impiegabile dai classici stimatori dell’analisi modale per l’identificazione di parametri modali aggiuntivi. Si dimostra, infatti, come i modi ricavabili dalle R-FRFs siano legati al sistema in esame quando considerato virtualmente soggetto a diverse tipologie di condizioni al contorno. Tale peculiarità denota un carattere locale di questi parametri modali addizionali, confermando la potenzialità delle R-FRFs nel campo della rilevazione di danni strutturali. Entrambi i filoni di ricerca sono corroborati da casi studio numerici e sperimentali, i quali offrono svariati scenari applicativi e risultati interessanti.
Contributi innovativi nel campo dell’Analisi Modale Operazionale finalizzati all’identificazione, al monitoraggio e alla damage detection in applicazioni ingegneristiche di frontiera = Novel contributions in the field of Operational Modal Analysis aimed at system identification, monitoring, and damage detection in challenging engineering applications / De Carolis, Simone. - ELETTRONICO. - (2022). [10.60576/poliba/iris/de-carolis-simone_phd2022]
Contributi innovativi nel campo dell’Analisi Modale Operazionale finalizzati all’identificazione, al monitoraggio e alla damage detection in applicazioni ingegneristiche di frontiera = Novel contributions in the field of Operational Modal Analysis aimed at system identification, monitoring, and damage detection in challenging engineering applications
De Carolis, Simone
2022-01-01
Abstract
In this dissertation, novel contributions in the field of Operational Modal analysis are presented in two principal branches. The former focuses on a vibro-acoustical OMA formulations as a simple and effective methodology for microsystems dynamic characterization. The particular output-only modal analysis methodology, that includes acoustical excitation via speakers and response measurements through a laser interferometer and microphone, is illustrated through the in-plane and out-of-plane flexural mode identification by experiment on high-quality factor quartz tuning fork (QTF). Additionally, a generalized OMA framework is proposed with the aim to overcome the main drawback of OMA approach consisting in the NExT assumption of uncorrelated white noises excitations. These hypotheses, in fact, are violated in all those cases in which the exerted environmental loads exhibit coloration, harmonic content or some kind of correlation, as in the cases of mechanical engineering systems like vehicles or wind turbines. Specifically, the proposed OMA technique requires some knowledge about the inputs acting on the system and, thus, it is applicable to systems for which something about the inputs is somehow known. The generalized modal structures of the output cross-correlation functions and power spectral densities are derived, as models showing the dependence not only by the modal parameters, but also by the input spectral characteristics, and employed in a customized identification technique. The second research offshoot is dedicated to a specific class of transmissibility functions, here called Response-based Frequency-Response-Functions (R-FRFs), and it comprises a first investigation on the estimation process of R-FRFs followed by a derivation of the relevant modal model, suitable for being tackled through frequency-domain estimators from the field of experimental and operational modal analysis, which let these additional modal parameters to be identified. It is demonstrated how modes retrieved from R-FRFs are related to the system under investigation, but, virtually, with a different set of boundary conditions. The particular properties give this additional modal parameters the advantage of being local, in turn confirming the significance of response-based frequency response functions in the field of damage detection. Both the research lines are corroborated by numerical and real-world experimental case studies that offer a number of application scenarios for results discussion.File | Dimensione | Formato | |
---|---|---|---|
34 ciclo-DE CAROLIS Simone.pdf
Open Access dal 10/03/2022
Descrizione: Manoscritto principale
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
24.69 MB
Formato
Adobe PDF
|
24.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.