Several modelling tools commonly used for supporting flood risk assessment and management are highly effective in representing physical (hydrological) phenomena but provide a rather limited understanding of the multiple implications that flood risk and flood risk reduction measures have on highly complex systems such as urban areas. In fact, the dynamic and unstable evolution – characterised also by significant uncertainty – of flood risk in urban systems is typically neglected. A limited understanding of the complex set of interactions between flood risk and urban areas may result in an ineffective flood risk management. In this context, some studies highlighted the relevance of resilience-based approaches to increase the capability of urban systems to deal with complex and uncertain future threats. The present work proposes an innovative modelling approach to support decision-makers, at a planning or strategic level, in managing urban flood risk while defining strategies for enhancing the resilience of the system. To this aim, the multi-dimensional implications of flood risk and of different flood risk management strategies are analysed and simulated. The adopted modelling approach is based on System Dynamics (SD) modelling principles and relies on the integration of scientific and stakeholder knowledge. The SD modelling approach is adopted because of its capacity of building a holis-tic system picture, while accounting for system structure and dynamic relations among multiple different urban components. Besides that, it allows the evaluation of different management solutions and the identification of suitable bundles of actions for both flood risk reduction and urban resilience increase. Both qualitative and quantitative SD modelling tools are used to fully exploit the abilities of the SD approach. The obtained results revealed i) the relevance of SD modelling in evaluating the effectiveness of measures to reduce flood risk and increase the urban flood resilience ultimately providing actionable information for decision-makers; ii) the added value provided by the combination of scientific and stakeholder knowledge in the entire modelling process; iii) the ability of Blue-Green infrastructure to deliver both hydrological and non-hydrological (i.e., social and environmental) benefits to the system thus reducing flood risk and increasing urban resilience to flooding. Reference is made to one of the case studies of the CUSSH and CAMELLIA projects, namely Thamesmead (London), a formerly inhospitable marshland currently undergoing a process of urban regeneration and increasingly vulnerable to flooding. While the proposed approach is appropriate in the context of the case study application, it can be adapted to ensure it is relevant to different contexts. Therefore, it represents an interesting opportunity for building a replicable approach to integrate urban development dynamics with flood risk, ultimately supporting decision-makers in identifying mitigation/prevention measures and understanding how they could help achieve multi-dimensional benefits.
Diversi strumenti di modellazione comunemente utilizzati per supportare la valutazione e la gestione del rischio di inondazione sono molto efficaci nel rappresentare i fenomeni fisici (idrologici), ma forniscono una comprensione piuttosto limitata delle molteplici implicazioni che il rischio di inondazione e le misure di riduzione del rischio hanno su sistemi altamente complessi come le aree urbane. Infatti, l'evoluzione dinamica e instabile - caratterizzata anche da una significativa incertezza - del rischio di inondazione nei sistemi urbani è generalmente trascurata. Una comprensione limitata del complesso insieme di interazioni tra rischio di inondazione e aree urbane può portare ad una sua inefficace gestione. In questo contesto, alcuni studi hanno evidenziato l'importanza di approcci basati sulla resilienza per aumentare la capacità dei sistemi urbani di affrontare minacce future complesse e incerte. Il presente lavoro propone un approccio modellistico innovativo per supportare i decisori, a livello pianificatorio o strategico, nella gestione del rischio di inondazioni urbane e nella definizione di strategie per aumentare la resilienza del sistema. A tal fine, vengono analizzate e simulate le implicazioni multidimensionali del rischio di inondazione e delle diverse strategie di gestione. L'approccio di modellazione adottato si basa sui principi della System Dynamics (SD) e sull'integrazione della conoscenza scientifica e degli stakeholder. L'approccio di modellazione SD è stato adottato per la sua capacità di costruire una visione olistica del sistema, tenendo conto della sua struttura e delle relazioni dinamiche tra più componenti urbane diverse. Inoltre, consente di valutare diverse soluzioni di gestione e di identificare pacchetti di azioni idonei sia per la riduzione del rischio di inondazione che per l'aumento della resilienza urbana. Per sfruttare appieno le capacità dell'approccio SD vengono utilizzati strumenti di modellazione SD sia qualitativi che quantitativi. I risultati ottenuti hanno rivelato i) l'importanza della modellazione SD nel valutare l'efficacia delle misure per ridurre il rischio di inondazioni e aumentare la resilienza alle inondazioni urbane, fornendo informazioni attua-bili per i decisori; ii) il valore aggiunto fornito dalla combinazione della conoscenza scientifica e degli stakeholder nell'intero processo di modellazione; iii) la capacità delle infrastrutture Blu-Verdi di fornire benefici sia idrologici che non idrologici (cioè sociali e ambientali) al sistema, riducendo così il rischio di inondazioni e aumentando la resilienza urbana. Specifico riferimento è fatto a uno dei casi di studio dei progetti CUSSH e CAMELLIA, ovvero Thamesmead (Londra), una palude un tempo inospitale attualmente sottoposta a un processo di rigenerazione urbana e sempre più vulnerabile alle inondazioni. Sebbene l'approccio proposto sia appropriato nel contesto dell'applicazione del caso di studio, può essere adattato per garantire la sua rilevanza in contesti diversi. Pertanto, rappresenta un'interessante opportunità per costruire un approccio replicabile per integrare le dinamiche di sviluppo urbano con il rischio di inondazione, supportando in ultima analisi i decisori nell'identificazione di misure di mitigazione/prevenzione e nella comprensione di come queste possano contribuire a ottenere benefici multidimensionali.
Participatory system dynamics modelling for supporting decision-makers in enhancing urban flood resilience: the Thamesmead blue-green vision / Coletta, Virginia Rosa. - ELETTRONICO. - (2023). [10.60576/poliba/iris/coletta-virginia-rosa_phd2023]
Participatory system dynamics modelling for supporting decision-makers in enhancing urban flood resilience: the Thamesmead blue-green vision
Coletta, Virginia Rosa
2023-01-01
Abstract
Several modelling tools commonly used for supporting flood risk assessment and management are highly effective in representing physical (hydrological) phenomena but provide a rather limited understanding of the multiple implications that flood risk and flood risk reduction measures have on highly complex systems such as urban areas. In fact, the dynamic and unstable evolution – characterised also by significant uncertainty – of flood risk in urban systems is typically neglected. A limited understanding of the complex set of interactions between flood risk and urban areas may result in an ineffective flood risk management. In this context, some studies highlighted the relevance of resilience-based approaches to increase the capability of urban systems to deal with complex and uncertain future threats. The present work proposes an innovative modelling approach to support decision-makers, at a planning or strategic level, in managing urban flood risk while defining strategies for enhancing the resilience of the system. To this aim, the multi-dimensional implications of flood risk and of different flood risk management strategies are analysed and simulated. The adopted modelling approach is based on System Dynamics (SD) modelling principles and relies on the integration of scientific and stakeholder knowledge. The SD modelling approach is adopted because of its capacity of building a holis-tic system picture, while accounting for system structure and dynamic relations among multiple different urban components. Besides that, it allows the evaluation of different management solutions and the identification of suitable bundles of actions for both flood risk reduction and urban resilience increase. Both qualitative and quantitative SD modelling tools are used to fully exploit the abilities of the SD approach. The obtained results revealed i) the relevance of SD modelling in evaluating the effectiveness of measures to reduce flood risk and increase the urban flood resilience ultimately providing actionable information for decision-makers; ii) the added value provided by the combination of scientific and stakeholder knowledge in the entire modelling process; iii) the ability of Blue-Green infrastructure to deliver both hydrological and non-hydrological (i.e., social and environmental) benefits to the system thus reducing flood risk and increasing urban resilience to flooding. Reference is made to one of the case studies of the CUSSH and CAMELLIA projects, namely Thamesmead (London), a formerly inhospitable marshland currently undergoing a process of urban regeneration and increasingly vulnerable to flooding. While the proposed approach is appropriate in the context of the case study application, it can be adapted to ensure it is relevant to different contexts. Therefore, it represents an interesting opportunity for building a replicable approach to integrate urban development dynamics with flood risk, ultimately supporting decision-makers in identifying mitigation/prevention measures and understanding how they could help achieve multi-dimensional benefits.File | Dimensione | Formato | |
---|---|---|---|
35 ciclo -COLETTA Virginia Rosa.pdf
accesso aperto
Descrizione: Tesi di dottorato completa di frontespizio
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
11.58 MB
Formato
Adobe PDF
|
11.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.