The growing frequency and magnitude of extreme weather events have in-creased the attention of scientific and international community regarding the correla-tion between anthropized environment and external environment. The climate change effects are now clear and, despite several recent global commitments undertaken in last years, the trend for near future will still be characterized by a significant rise in average temperatures. According to the latest report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), even limiting the global warming to 1.5°C com-pared to pre-industrial levels in the short-term scenario (2021-2040), would limit the damage related to extreme weather events but would not avoid them. Although this topic regards all human activities, the strong incidence of building energy consump-tion – equal to nearly 40% of total consumption in highly developed countries – makes the building field particularly affected by mitigation actions. Recently, the research has shifted its attention from an approach based on the maximization of the energy disconnection between internal and external environment, to an approach in which the building envelope can adapt themselves to consider the variations of the boundary conditions; the envelope is then perceived as an interface rather than a shield. The latest studies are therefore focusing on the potential of re-sponsive envelopes or rather envelopes capable to adapt their properties – geomet-rical, solar, thermal, etc. - to external stimuli. Despite these technologies were con-ceived with the aim to adapt to external environment changes on short/mid-term time scales (sub-hourly, hourly, daily, and seasonal), recent studies are evaluating their contribution on larger time scales (decades) to improve the resilience of building en-velopes to climate change. This work aims to provide, firstly, a detailed description of the state of the art of responsive systems and of methods and tools for energy simulation of complex re-sponsive systems. Hence, the main output of the work consists of an interactive computational platform for the energy analysis of these systems in present and fu-ture climate scenarios. The developed platform – based on EnergyPlus, Python, and Grasshopper – allows to select different climate zones represented by 25 European cities and different responsive envelope technologies – phase change materials, shape morphing shadings, electrochromic windows – selecting the climate scenario (current, 2050, 2080) to be analysed with a simple interface, widely spread, and easily customizable. Starting from simple inputs (i.e., location, climate scenario, technology, control type) selectable from pop-up lists, the platform – via Python algo-rithms launched directly from Grasshopper on a local server – edits the energy mod-el, launches the simulations, and provides directly a comparison sheet where the re-sponsive model is compared with a traditional reference static model. Therefore, the different topics covered by the platform allow the user to easily compare the behaviour of different responsive technologies in different geographical contexts, future scenarios, or – for externally controlled systems – through different control strategies using validated and easily comparable models. The development of a simple platform capable of managing dynamic energy simulations of complex sys-tems aims to provide the required tools to consider responsive envelopes as real al-ternatives to traditional technologies by evaluating their long-term contribution, con-sidering the climate change underway.

La crescente frequenza ed intensità di eventi climatici estremi ha aumentato l’attenzione della comunità scientifica ed internazionale verso il rapporto tra l’ambiente antropizzato e l’ambiente esterno. Gli effetti del cambiamento climatico sono ormai evidenti e, nonostante diversi recenti impegni globali intrapresi negli ulti-mi anni, la tendenza relativa al futuro immediato sarà comunque caratterizzata da un significativo innalzamento delle temperature medie. Secondo l’ultimo report (AR6) dell’Intergovernmental Panel on Climate Change (IPCC), anche limitando il riscalda-mento globale a 1.5°C rispetto ai livelli preindustriali nello scenario a breve termine (2021-2040), limiterebbe i danni legati ad eventi climatici estremi ma non li elimine-rebbe. Nonostante il tema riguardi tutte le attività antropiche, la forte incidenza dei consumi energetici relativi al patrimonio costruito – pari a circa il 40% dei consumi totali nei paesi altamente sviluppati – rende il settore edilizio particolarmente interes-sato dalle azioni di mitigazione. Negli ultimi anni la ricerca ha spostato la sua attenzione da un approccio basato sulla massimizzazione della disconnessione energetica tra interno ed esterno ad un approccio in cui l’involucro edilizio possa adattarsi per accomodare le variazioni delle condizioni al contorno; l’involucro viene quindi percepito come un’interfaccia piutto-sto che come una barriera. Gli studi più recenti si stanno quindi focalizzando sulle po-tenzialità degli involucri responsivi ovvero involucri in grado di adattare le proprie ca-ratteristiche – geometriche, solari, termiche, ecc. – agli stimoli esterni. Sebbene que-ste tecnologie nascano con l’obiettivo di adattarsi a variazioni dell’ambiente esterno su scale temporali di breve/medio termine (sub orarie, orarie, giornaliere, e stagiona-li), studi recenti stanno valutando il loro contributo su scale temporali più ampie (de-cadi) per poter migliorare la resilienza degli involucri edilizi ai cambiamenti climatici. Il presente lavoro mira a fornire, in prima analisi, una dettagliata descrizione dello stato dell’arte dei sistemi responsivi e dei metodi e strumenti per la simulazione energetica di sistemi responsivi complessi. Quindi, l’output principale del lavoro è costituito da una piattaforma computazionale interattiva per l’analisi energetica di questi sistemi in scenari climatici presenti e futuri. La piattaforma sviluppata – basata su EnergyPlus, Python, e Grasshopper – offre la possibilità di selezionare diverse zo-ne climatiche rappresentate da un ventaglio di 25 città Europee e diverse tecnologie responsive di involucro – materiali a cambiamento di fase, schermature a geometria variabile, vetri elettrocromici – selezionando lo scenario climatico (corrente, 2050, 2080) da analizzare con un’interfaccia semplice, ampiamente diffusa, e facilmente personalizzabile. Partendo quindi da semplici input (i.e., località, scenario climatico, tecnologia, tipologia di controllo) selezionabili da menù a scomparsa, la piattaforma – tramite degli algoritmi Python lanciati direttamente da Grasshopper in un server loca-le – edita il modello energetico, lancia le simulazioni e fornisce direttamente un foglio comparativo in cui il modello responsivo viene confrontato con un modello statico tradizionale di riferimento. Pertanto, i diversi temi trattati dalla piattaforma consentono all’utente di poter confrontare facilmente il comportamento di diverse tecnologie responsive in diversi contesti geografici, in diversi scenari futuri, o – per i sistemi a controllo estrinseco – attraverso diverse strategie di controllo utilizzando modelli validati e facilmente con-frontabili. Lo sviluppo di una piattaforma semplice in grado di gestire simulazioni energetiche dinamiche di elementi complessi mira a fornire gli strumenti necessari per considerare gli involucri responsivi come reali alternative alle soluzioni tradizionali valutando il loro contributo anche nel lungo termine, alla luce dei cambiamenti clima-tici ormai in atto.

Responsive envelopes performance analysis in current and future climate scenarios: development of an interactive computational platform / Carlucci, Francesco. - (2023). [10.60576/poliba/iris/carlucci-francesco_phd2023]

Responsive envelopes performance analysis in current and future climate scenarios: development of an interactive computational platform

Carlucci, Francesco
2023-01-01

Abstract

The growing frequency and magnitude of extreme weather events have in-creased the attention of scientific and international community regarding the correla-tion between anthropized environment and external environment. The climate change effects are now clear and, despite several recent global commitments undertaken in last years, the trend for near future will still be characterized by a significant rise in average temperatures. According to the latest report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), even limiting the global warming to 1.5°C com-pared to pre-industrial levels in the short-term scenario (2021-2040), would limit the damage related to extreme weather events but would not avoid them. Although this topic regards all human activities, the strong incidence of building energy consump-tion – equal to nearly 40% of total consumption in highly developed countries – makes the building field particularly affected by mitigation actions. Recently, the research has shifted its attention from an approach based on the maximization of the energy disconnection between internal and external environment, to an approach in which the building envelope can adapt themselves to consider the variations of the boundary conditions; the envelope is then perceived as an interface rather than a shield. The latest studies are therefore focusing on the potential of re-sponsive envelopes or rather envelopes capable to adapt their properties – geomet-rical, solar, thermal, etc. - to external stimuli. Despite these technologies were con-ceived with the aim to adapt to external environment changes on short/mid-term time scales (sub-hourly, hourly, daily, and seasonal), recent studies are evaluating their contribution on larger time scales (decades) to improve the resilience of building en-velopes to climate change. This work aims to provide, firstly, a detailed description of the state of the art of responsive systems and of methods and tools for energy simulation of complex re-sponsive systems. Hence, the main output of the work consists of an interactive computational platform for the energy analysis of these systems in present and fu-ture climate scenarios. The developed platform – based on EnergyPlus, Python, and Grasshopper – allows to select different climate zones represented by 25 European cities and different responsive envelope technologies – phase change materials, shape morphing shadings, electrochromic windows – selecting the climate scenario (current, 2050, 2080) to be analysed with a simple interface, widely spread, and easily customizable. Starting from simple inputs (i.e., location, climate scenario, technology, control type) selectable from pop-up lists, the platform – via Python algo-rithms launched directly from Grasshopper on a local server – edits the energy mod-el, launches the simulations, and provides directly a comparison sheet where the re-sponsive model is compared with a traditional reference static model. Therefore, the different topics covered by the platform allow the user to easily compare the behaviour of different responsive technologies in different geographical contexts, future scenarios, or – for externally controlled systems – through different control strategies using validated and easily comparable models. The development of a simple platform capable of managing dynamic energy simulations of complex sys-tems aims to provide the required tools to consider responsive envelopes as real al-ternatives to traditional technologies by evaluating their long-term contribution, con-sidering the climate change underway.
2023
La crescente frequenza ed intensità di eventi climatici estremi ha aumentato l’attenzione della comunità scientifica ed internazionale verso il rapporto tra l’ambiente antropizzato e l’ambiente esterno. Gli effetti del cambiamento climatico sono ormai evidenti e, nonostante diversi recenti impegni globali intrapresi negli ulti-mi anni, la tendenza relativa al futuro immediato sarà comunque caratterizzata da un significativo innalzamento delle temperature medie. Secondo l’ultimo report (AR6) dell’Intergovernmental Panel on Climate Change (IPCC), anche limitando il riscalda-mento globale a 1.5°C rispetto ai livelli preindustriali nello scenario a breve termine (2021-2040), limiterebbe i danni legati ad eventi climatici estremi ma non li elimine-rebbe. Nonostante il tema riguardi tutte le attività antropiche, la forte incidenza dei consumi energetici relativi al patrimonio costruito – pari a circa il 40% dei consumi totali nei paesi altamente sviluppati – rende il settore edilizio particolarmente interes-sato dalle azioni di mitigazione. Negli ultimi anni la ricerca ha spostato la sua attenzione da un approccio basato sulla massimizzazione della disconnessione energetica tra interno ed esterno ad un approccio in cui l’involucro edilizio possa adattarsi per accomodare le variazioni delle condizioni al contorno; l’involucro viene quindi percepito come un’interfaccia piutto-sto che come una barriera. Gli studi più recenti si stanno quindi focalizzando sulle po-tenzialità degli involucri responsivi ovvero involucri in grado di adattare le proprie ca-ratteristiche – geometriche, solari, termiche, ecc. – agli stimoli esterni. Sebbene que-ste tecnologie nascano con l’obiettivo di adattarsi a variazioni dell’ambiente esterno su scale temporali di breve/medio termine (sub orarie, orarie, giornaliere, e stagiona-li), studi recenti stanno valutando il loro contributo su scale temporali più ampie (de-cadi) per poter migliorare la resilienza degli involucri edilizi ai cambiamenti climatici. Il presente lavoro mira a fornire, in prima analisi, una dettagliata descrizione dello stato dell’arte dei sistemi responsivi e dei metodi e strumenti per la simulazione energetica di sistemi responsivi complessi. Quindi, l’output principale del lavoro è costituito da una piattaforma computazionale interattiva per l’analisi energetica di questi sistemi in scenari climatici presenti e futuri. La piattaforma sviluppata – basata su EnergyPlus, Python, e Grasshopper – offre la possibilità di selezionare diverse zo-ne climatiche rappresentate da un ventaglio di 25 città Europee e diverse tecnologie responsive di involucro – materiali a cambiamento di fase, schermature a geometria variabile, vetri elettrocromici – selezionando lo scenario climatico (corrente, 2050, 2080) da analizzare con un’interfaccia semplice, ampiamente diffusa, e facilmente personalizzabile. Partendo quindi da semplici input (i.e., località, scenario climatico, tecnologia, tipologia di controllo) selezionabili da menù a scomparsa, la piattaforma – tramite degli algoritmi Python lanciati direttamente da Grasshopper in un server loca-le – edita il modello energetico, lancia le simulazioni e fornisce direttamente un foglio comparativo in cui il modello responsivo viene confrontato con un modello statico tradizionale di riferimento. Pertanto, i diversi temi trattati dalla piattaforma consentono all’utente di poter confrontare facilmente il comportamento di diverse tecnologie responsive in diversi contesti geografici, in diversi scenari futuri, o – per i sistemi a controllo estrinseco – attraverso diverse strategie di controllo utilizzando modelli validati e facilmente con-frontabili. Lo sviluppo di una piattaforma semplice in grado di gestire simulazioni energetiche dinamiche di elementi complessi mira a fornire gli strumenti necessari per considerare gli involucri responsivi come reali alternative alle soluzioni tradizionali valutando il loro contributo anche nel lungo termine, alla luce dei cambiamenti clima-tici ormai in atto.
climate change; energy efficiency; responsive envelopes; architectural engineering; sustainable design; digital innovation; computational platform
cambiamento climatico; efficienza energetica; involucri responsivi; architettura tecni-ca; progettazione per la sostenibilità; innovazione e digitalizzazione; piattaforma computazionale
Responsive envelopes performance analysis in current and future climate scenarios: development of an interactive computational platform / Carlucci, Francesco. - (2023). [10.60576/poliba/iris/carlucci-francesco_phd2023]
File in questo prodotto:
File Dimensione Formato  
35 ciclo-CARLUCCI Francesco.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 7.53 MB
Formato Adobe PDF
7.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/252252
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact